Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Geodetic implications on block formation and geodynamic domains in the South Shetland Islands, Antarctic Peninsula
    Publication . Berrocoso, M.; Fernandez-Ros, A.; Prates, Gonçalo; Garcia, A.; Kraus, S.
    The South Shetland Islands archipelago is dynamically complex due to its tectonic surroundings. Most islands are part of a formerly active volcanic arc, although Deception, Penguin and Bridgeman Islands, as well as several submarine volcanoes, are characterized by active back-arc volcanism. Geodetic benchmarks were deployed and the movement of the lithosphere to which they were fixed measured to provide geodynamic insight for the South Shetland Islands, Bransfield Basin and Antarctic Peninsula area based on surface deformation. These benchmarks' data add spatial and temporal coverage to previous results. The results reveal two different geodynamic patterns, each confined to a distinct part of the South Shetland Islands archipelago. The inferred absolute horizontal velocity vectors for the benchmarks in the northeastern part of the archipelago are consistent with the opening of the Bransfield Basin, while benchmark vectors in the southwestern part of the archipelago are similar to those of the benchmarks on the Antarctic Peninsula. In between, Snow, Deception and Livingston Islands represent a transition zone. In this area, the horizontal velocity vectors relative to the Antarctic plate shift northeastwards from N to NW. Furthermore, the South Shetland Islands benchmarks, except for that at Gibbs (Elephant) Islands, indicate subsidence, which might be a consequence of the slab roll-back at the South Shetland Trench. In contrast, the uplift revealed by the Antarctic Peninsula benchmarks suggests glacial isostatic adjustment after the Larson B ice-shelf breakup. (C) 2015 Elsevier B.V. All rights reserved.
  • Deception Island 1967–1970 volcano eruptions from historical aerial frames and satellite imagery (Antarctic Peninsula)
    Publication . Prates, Gonçalo; Torrecillas, Cristina; Berrocoso, Manuel; Goyanes, Gabriel; Vieira, Gonçalo
    Aerial frames and satellite imagery are widely recognized data sources from which to produce maps. For volcanoes, maps enable the quantification of erupted ash and the destruction caused. The last eruptive sequence on Deception Island was endured from 1967 to 1970. Analogue maps were produced via classical photogrammetric methods with a high degree of human intervention mainly to analyse the volcanic-centres areas only. However, historical aerial frames cover the whole of Deception Island. Structure from motion photogrammetry, a near-automated compilation of digital image processing strategies, minimizes the degree of human intervention to produce orthographic mosaics and digital elevation models from digital aerial frames. Orthographic mosaics were produced from historical aerial frames of 1956 and 1968, and a Kompsat-3 image of 2020. Their shared rootmean-square deviation was 1.8 m and 1.7 m in easting and northing, respectively, at ground control points measured with phase-differential global navigation satellite systems. The digital elevation models were processed with a root-mean-square deviation of 2.3 m and 3.6 m from 1956 and 1968 aerial frames, respectively. As the first application, erupted ashfall and the subsequent destruction, mainly at the former Chilean and British bases, were identified, and the volume of erupted ash was assessed to be over 0.16 km3 within the area mapped by these new digital cartographic products.
  • Surface displacement of Hurd Rock glacier from 1956 to 2019 from historical aerial frames and satellite imagery (Livingston Island, Antarctic Peninsula)
    Publication . Prates, Gonçalo; Vieira, Gonçalo
    In the second half of the 20th century, the western Antarctic Peninsula recorded the highest mean annual air temperature rise in the Antarctic. The South Shetland Islands are located about 100 km northwest of the Antarctic Peninsula. The mean annual air temperature at sea level in this Maritime Antarctic region is close to −2 °C and, therefore, very sensitive to permafrost degradation following atmospheric warming. Among geomorphological indicators of permafrost are rock glaciers found below steep slopes as a consequence of permafrost creep, but with surficial movement also generated by solifluction and shallow landslides of rock debris and finer sediments. Rock glacier surface velocity is a new essential climate variable parameter by the Global Climate Observing System, and its historical analysis allows insight into past permafrost behavior. Recovery of 1950s aerial image stereo-pairs and structure-from-motion processing, together with the analysis of QuickBird 2007 and Pleiades 2019 high-resolution satellite imagery, allowed inferring displacements of the Hurd rock glacier using compression ridge-and-furrow morphology analysis over 60 years. Displacements measured on the rock glacier surface from 1956 until 2019 were from 7.5 m to 22.5 m and surface velocity of 12 cm/year to 36 cm/year, measured on orthographic images, with combined deviation root-mean-square of 2.5 m and 2.4 m in easting and northing. The inferred surface velocity also provides a baseline reference to assess today’s displacements. The results show patterns of the Hurd rock glacier displacement velocity, which are analogous to those reported within the last decade, without being possible to assess any displacement acceleration.