Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Non-invasive temperature prediction of in vitro therapeutic ultrasound signals using neural networks
    Publication . Teixeira, C. A.; Ruano, Antonio; Ruano, M. Graça; Pereira, W. C. A.; Negreira, C.
    In this paper, a novel black-box modelling scheme applied to non-invasive temperature prediction in a homogeneous medium subjected to therapeutic ultrasound is presented. It is assumed that the temperature in a point of the medium is non-linearly related to some spectral features and one temporal feature, extracted from the collected RF-lines. The black-box models used are radial basis functions neural networks (RBFNNs), where the best-fitted models were selected from the space of model structures using a genetic multiobjective strategy. The best-fitted predictive model presents a maximum absolute error less than 0.4 C in a prediction horizon of approximately 2 h, in an unseen data sequence. This work demonstrates that this type of black-box model is well-suited for punctual and noninvasive temperature estimation, achieving, for a single point estimation, better results than the ones presented in the literature, encouraging research on multi-point non-invasive temperature estimation.
  • Single black-box models for two-point non-invasive temperature prediction
    Publication . Teixeira, C. A.; Ruano, M. Graça; Ruano, Antonio; Pereira, W. C. A.; Negreira, C.
    In this paper the performance of a genetically selected radial basis functions neural network is evaluated for non-invasive two-point temperature estimation in a homogeneous medium, irradiated by therapeutic ultrasound at physiotherapeutic levels. In this work a single neural network was assigned to estimate the temperature profile at the two considered points, and more consistent results were obtained than when considering one model for each point. This result was possible by increasing the model complexity. The best model predicts the temperature from two unseen data sequences during approximately 2 hours, with a maximum absolute error less than 0.5 oC, as desired for a therapeutic temperature estimator.
  • Temperature models of a homogeneous medium under therapeutic ultrasound
    Publication . Teixeira, C. A.; Cortela, G.; Gomez, H.; Ruano, M. Graça; Ruano, Antonio; Negreira, C.; Pereira, W. C. A.
    Temperature modelling of human tissue subjected to ultrasound for therapeutic use is essential for an accurate instrumental assessment and calibration. Prior studies developed on a homogeneous medium are hereby reported. Non-linear punctual temperature modelling is proposed by means of Radial Basis Functions Neural Network (RBFNN) structures. The best-performed structures are obtained using a Multiobjective Genetic Algorithm (MOGA). The best performed neural structure presents a Root Mean Square Error (RMSE) of one order magnitude less than the one presented by the best behaved linear model - the AutoRegressive with eXogenous inputs (ARX); The maximum absolute error achieved with the neural model was 0.2 ºC.
  • Linear versus non-linear non-invasive temperature predictors in a homogeneous medium subjected to physiotherapeutic ultrasound
    Publication . Teixeira, C. A.; Ruano, M. Graça; Pereira, W. C. A.; Ruano, Antonio; Negreira, C.
    The lack of accurate time-spatial temperature estimators/predictors conditions the safe application of thermal therapies, such as hyperthermia. In this paper, a comparison between a linear and a non-linear class of models for non-invasive temperature prediction in a homogeneous medium, subjected to ultrasound at physiotherapeutic levels is presented. The linear models used were autoregressive with exogenous inputs (ARX) and the non-linear models were radial basis functions neural networks (RBFNN). In order to create and validate the models, an experiment was build to extract in vitro ultrasound RF-lines, as well as its correspondent temperature values. Then, features were extracted from the measured RF-lines and the models were trained and validated. For both the models, the best-fitted structures were selected using the multi-objective genetic algorithm (MOGA), given the enormous number of possible structures. The best RBFNN model presented a maximum absolute predictive error in the validation set five times less than the value presented by the best ARX model. In this work, the best RBFNN reached a maximum absolute error of 0.42 ºC, which is bellow the value pointed as a borderline between an appropriate and an undesired temperature estimator, which is 0.5 ºC. The average error was one order of magnitude less in the RBFNN case, and a less biased estimation was met. In addition, the best RBFNN needed less environmental information (inputs), given the capacity to non-linearly relate the information. The results obtained are encouraging, considering that coherent results should be obtained in a time-spatial modelling schema using RBFNN models.