Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Temperature models of a homogeneous medium under therapeutic ultrasoundPublication . Teixeira, C. A.; Cortela, G.; Gomez, H.; Ruano, M. Graça; Ruano, Antonio; Negreira, C.; Pereira, W. C. A.Temperature modelling of human tissue subjected to ultrasound for therapeutic use is essential for an accurate instrumental assessment and calibration. Prior studies developed on a homogeneous medium are hereby reported. Non-linear punctual temperature modelling is proposed by means of Radial Basis Functions Neural Network (RBFNN) structures. The best-performed structures are obtained using a Multiobjective Genetic Algorithm (MOGA). The best performed neural structure presents a Root Mean Square Error (RMSE) of one order magnitude less than the one presented by the best behaved linear model - the AutoRegressive with eXogenous inputs (ARX); The maximum absolute error achieved with the neural model was 0.2 ºC.
- Non-invasive tissue temperature evaluation during application of therapeutic ultrasound: precise time-spatial non-linear modellingPublication . Teixeira, C. A.; Ruano, M. Graça; Ruano, Antonio; Pereira, W. C. A.The potential of thermal therapy’s applications improve with the development of accurate non-invasive timespatial temperature models. These models should represent the non-linear tissue thermal behaviour and be capable of tracking temperature at both time-instant and spatial point. An in-vitro experiment was developed based on a gel phantom, heated by a therapeutic ultrasound (TUS) device emitting continuously. The heating process was monitored by an imaging ultrasound (IUS) transducer working in pulse-echo mode, placed perpendicularly to the TUS transducer. The IUS RF-lines and temperature values were collected 60 mm distant from the TUS transducer face. Three thermocouples were aligned along the IUS transducer axial direction and across the TUS transducer radial direction (1 cm spaced). Three different TUS intensities were applied. The non-invasive time-spatial evolutionary temperature models were created making use of radial basis functions neural networks (RBFNN). The neural network input information was: the propagation time-delay between RF-line echoes and the past temperature lags from three different medium locations and three different TUS intensities. A total of nine different operating situations were studied. The best RBFNN structures were automatically determined by a multiobjective genetic algorithm, due to the enormous number of possible structures. The RBFNN temperature models were evaluated with data never used in the models, neither at the training or structural selection phases. In order to precisely evaluate the model generalisation performance these data included the nine possible operating situations. The best model presents a maximum absolute error less than 0.5 degrees Celsius (gold-standard value for hyperthermia/diathermia applications). To be mentioned also that the best model presents low computational complexity enabling future real-time implementations. Concluding, a maximum absolute error below the gold-standard value pointed for hyperthermia/diathermia applications was attained. In addition, this methodology does not require a-priori determination of physical constants and mathematical simplifications required for analytical methodologies.
- Nonlinear identification of aircraft gas-turbine dynamicsPublication . Ruano, Antonio; Fleming, P. J.; Teixeira, C. A.; Rodriguez-Vázquez, K.; Fonseca, C. M.Identi cation results for the shaft-speed dynamics of an aircraft gas turbine, under normal operation, are presented. As it has been found that the dynamics vary with the operating point, nonlinear models are employed. Two di7erent approaches are considered: NARX models, and neural network models, namely multilayer perceptrons, radial basis function networks and B-spline networks. A special attention is given to genetic programming, in a multiobjective fashion, to determine the structure ofNARMAX and B-spline models.