Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Matrix gla protein in turbot (Scophthalmus maximus): gene expression analysis and identification of sites of protein accumulation
    Publication . Roberto, Vania Palma; Cavaco, S.; S B Viegas, Carla; Simes, D; Ortiz-Delgado, J. B.; Sarasquete, C.; Gavaia, Paulo J.; Cancela, Leonor
    Matrix Gla protein (Mgp) is a secreted vitamin K-dependent extracellular matrix protein and a physiological inhibitor of calcification whose gene structure, amino acid sequence and tissue distribution have been conserved throughout evolution. In the present work, the turbot (Scophthalmus maximus) mgp cDNA was cloned and the sequence of the deduced protein compared to that of other vertebrates. As expected, it was closer to teleosts than to other vertebrate groups but there was a strict conservation of amino-acids thought to be important for protein function. Analysis of mgp gene expression indicated branchial arches as the site with higher levels of expression, followed by heart, vertebra and kidney. These results were confirmed by in situ hybridization with a strong mgp expression in branchial arch chondrocytes. Mgp was found to accumulate in gills where it appeared to be restricted to chondrocytes from branchial filaments, while in vertebrae it was localized in vertebral end plates, in growth zones, in vertebral arches and spines and in notochord cells. In the soft tissues analysed, Mgp was mainly detected in kidney and heart, consistent with previous data and providing further evidence for a role of Mgp as a calcification inhibitor and a modulator of the mineralization process. Our studies provide evidence that turbot, an important new species for aquaculture, is also a useful model to study function and expression of Mgp.
  • Osteocalcin and Matrix Gla Protein in zebrafish (Danio rerio) and Senegal sole (Solea senegalensis): comparative gene and protein expression during larval development through adulthood
    Publication . Gavaia, Paulo J.; Simes, D; Ortiz-Delgado, J. B.; S B Viegas, Carla; Pinto, Jorge; Kelsh, R. N.; Sarasquete, C.; Cancela, Leonor
    Bone Gla protein (Bgp or osteocalcin) and matrix Gla protein (Mgp) are important in calcium metabolism and skeletal development, but their precise roles at the molecular level remain poorly understood. Here, we compare the tissue distribution and accumulation of Bgp and Mgp during larval development and in adult tissues of zebrafish (Danio rerio) and throughout metamorphosis in Senegal sole (Solea senegalensis), two fish species with contrasting environmental calcium levels and degrees of skeletal reorganization at metamorphosis. Mineral deposition was investigated in parallel using a modified Alizarin red/Alcian blue protocol allowing sensitive simultaneous detection of bone and cartilage. In zebrafish, bgp and mgp mRNAs were localized in all mineralized tissues during and after calcification including bone and calcified cartilage of branchial arches. Through immunohistochemistry we demonstrated that these proteins accumulate mainly in the matrix of skeletal structures already calcified or under calcification, confirming in situ hybridization results. Interestingly, some accumulation of Bgp was also observed in kidney, possibly due to the presence of a related protein, nephrocalcin. Chromosomal localization of bgp and mgp using a zebrafish radiation hybrid panel indicated that both genes are located on the same chromosome, in contrast to mammals where they map to different chromosomes, albeit in regions showing synteny with the zebrafish location. Results in Senegal sole further indicate that, during metamorphosis, there is an increase in expression of both bgp and mgp, paralleling calcification of axial skeleton structures. In contrast with results obtained for previously studied marine fishes, in zebrafish and Senegal sole Mgp accumulates in both calcified tissues and non-mineralized vessel walls of the vascular system. These results suggest different patterns of Mgp accumulation between fish and mammals.