Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Impact of thermal blanching and thermosonication treatments on watercress (Nasturtium officinale) quality: thermosonication process optimisation and microstructure evaluation
    Publication . Cruz, R. M. S.; Vieira, M. M. C.; Fonseca, Susana C.; Silva, C. L. M.
    The objectives of the present work were to optimise watercress heat and thermosonication blanching conditions, in order to obtain a product with better quality for further freezing, and to evaluate the effects of thermosonication on the microstructure of watercress leaves. In a chart of optimal time–temperature conditions for a 90% peroxidase inactivation (imposed constraint), vitamin C (objective function) and a-value (improvement toward green) were mathematically predicted for both heat and thermosonication blanching treatments. Two optimal thermosonication combinations were selected: 92°C and 2 s, retaining 95% of vitamin C content and 5% a-value improvement, and a better condition in terms of practical feasibility, 86°C and 30 s, allowing a 75% vitamin C retention and 8% a-value improvement. The experimental values, for each thermosonication optimal time–temperature zone, were in good agreement with the models' predicted responses. In terms of microstructure, thermosonicated watercress at 86 and 92°C showed similar loss of turgor and release of chloroplasts. The proposed optimal thermosonication blanching conditions allow the improvement of the blanched watercress quality and consequently contribute for the development of a high-quality new frozen product. However, a suitable scale-up is mandatory for industrial implementation.
  • Physico-mechanical properties of chitosan films with carvacrol and grape seed extract
    Publication . Rubilar, Javiera F.; Cruz, R. M. S.; Silva, Hélder D.; Vicente, António A.; Khmelinskii, Igor; Vieira, M. M. C.
    The physico-mechanical properties of 3 films composed by carvacrol, grape seed extract (GSE) and chitosan in different proportions were studied. The films, prepared by solvent casting technique with the following compositions of the casting solutions in carvacrol, GSE and chitosan: film-1: 9.6 ppm–684 ppm–1.25% w/v, film-2: 60 ppm–400 ppm–1.2% w/v and film-3: 90 ppm–160 ppm–1.24% w/v and were compared to a control (1.25% w/v chitosan) film. Mechanical, structural, barrier and colour properties of the films were evaluated. Film-3 presented the lowest water vapour and carbon dioxide permeabilities (WVP and CO2P) and tensile strength (TS) values and the highest oxygen permeability (O2P), whereas film-1 presented the highest water content and the lowest crystallinity, CO2P, TS and luminosity. These results suggest that in the range studied, carvacrol and GSE affect the film structure and its mechanical properties due to hydrophilic (GSE) and hydrophobic (carvacrol) compounds. This work will help the development of edible films, based on physico-mechanical properties, contributing to food preservation and shelf-life extension.