Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Quantifying and modelling the contribution of streams that recharge the Querenca-Silves aquifer in the south of Portugal
    Publication . Salvador, Nuria; Monteiro, José Paulo; Hugman, Rui; Stigter, Tibor; Reis, E.
    The water balance of the mesocenozoic aquifers of the Algarve, in the south of Portugal has traditionally been estimated considering only direct ("autogenic") recharge from rainfall occurring in the area of the aquifers. Little importance has been attributed to so-called allogenic recharge, originating from streambed infiltration from runoff generated outside the aquifers, particularly in the Palaeozoic rocks to the north where runoff is high. The Querenca-Silves (QS) aquifer is the most important aquifer of the region both for irrigation and public water supply. Several important and sensitive surface/groundwater ecotones and associated groundwater dependent ecosystems exist at the springs of the natural discharge areas of the aquifer system. A numerical flow model has been in constant development over the last few years and currently is able to reproduce the aquifer's responses to estimated direct recharge and abstraction for the years 2001-2010. However, recharge calculations for the model do not take into account allogenic recharge infiltration along influent reaches of streams. The quantification of allogenic recharge may further improve the assessment of water availability and exploitation risks. In this paper an attempt is made to quantify the average annual contribution of allogenic recharge to the QS aquifer, based on monitoring data of the principal water courses that cross the aquifer system. Significant uncertainties related to surface runoff generated within the aquifer area, as well as areal recharge were identified and the consequences for the optimization of spatial distribution of transmissivity in the groundwater flow model are also addressed.
  • Combined assessment of climate change and socio-economic development as drivers of freshwater availability in the south of Portugal
    Publication . Stigter, Tibor Y.; Varanda, Marta; Bento, Sofia; Nunes, Joao Pedro; Hugman, Rui
    A combined assessment of the potential impacts from climate change (CC) and socio-economic development (SED) on water resources is presented for the most important aquifer in the south of Portugal. The goal is to understand how CC and SED affect the currently large pressures from water consuming and contaminating activities, predominantly agriculture. Short-term (2020-2050) and long-term (2070-2100) CC scenarios were developed and used to build aquifer recharge and crop water demand scenarios, using different methods to account for uncertainty. SED scenarios were developed using bottom-up and top-down methods, and discussed at workshops with farmers and institutional stakeholders in the water sector. Groundwater use was quantified for each scenario. Together with the recharge scenarios, these were run through a calibrated groundwater flow model, to study their individual and joint impacts on groundwater levels and discharge rates into a coastal estuary. Recharge scenarios show clear negative long-term trends and short-term increase in temporal variability of recharge, though short-term model uncertainties are higher. SED scenario 1 (SED1), predicting intensification and decline of small farms, considered the most likely by all workshop participants, shows a large drop in agricultural area and water demand. SED2, a most desired scenario by farmers, foresees growth and modernization of agriculture, but proves unsustainable in combination with predicted CC without efficient adaptation measures. The results thus reveal that CC in the region will dynamically interact with economic factors, and going one step beyond, CC could be directly integrated as a constraint in the development of SED scenarios. Exercises involving the integration of CC and SED regionally based scenarios, constructed in both bottom-up and top- down fashion and discussed in participatory contexts are still rarely used for adaptation, and specifically adaptation of agriculture to water scarcity. The joint analysis of CC and SED revealed challenging, as it involved the use of different methods across the border between natural and social sciences. In our view this method contributes in an encouraging manner to a more holistic and transdisciplinary water management, by allowing a more plausible identification of what (and if) adaptation measures are needed.