Loading...
4 results
Search Results
Now showing 1 - 4 of 4
- Short-term interactive effects of ultraviolet radiation, carbon dioxide and nutrient enrichment on phytoplankton in a shallow coastal lagoonPublication . Domingues, Rita B.; Guerra, Cátia C.; Galvão, Helena M.; Brotas, Vanda; Barbosa, Ana B.The main goal of this study was to evaluate short-term interactions between increased CO2, UVR and inorganic macronutrients (N, P and Si) on summer phytoplankton assemblages in the Ria Formosa coastal lagoon (SW Iberia), subjected to intense anthropogenic pressures and highly vulnerable to climate change. A multifactorial experiment using 20 different nutrient-enriched microcosms exposed to different spectral and CO2 conditions was designed. Before and after a 24-h in situ incubation, phytoplankton abundance and composition were analysed. Impacts and interactive effects of high CO2, UVR and nutrients varied among different functional groups. Increased UVR had negative effects on diatoms and cyanobacteria and positive effects on cryptophytes, whereas increased CO2 inhibited cyanobacteria but increased cryptophyte growth. A positive synergistic interaction between CO2 and UVR was observed for diatoms; high CO2 counteracted the negative effects of UVR under ambient nutrient concentrations. Nutrient enrichments suppressed the negative effects of high CO2 and UVR on cyanobacteria and diatoms, respectively. Beneficial effects of CO2 were observed for diatoms and cryptophytes under combined additions of nitrate and ammonium, suggesting that growth may be limited by DIC availability when the primary limitation by nitrogen is alleviated. Beneficial effects of high CO2 and UVR in diatoms were also induced or intensified by ammonium additions.
- Effects of ultraviolet radiation and CO2 increase on winter phytoplankton assemblages in a temperate coastal lagoonPublication . Domingues, Rita B.; Guerra, Cátia C.; Barbosa, Ana B.; Brotas, V.; Galvão, Helena M.Increases in ultraviolet radiation (UVR) and CO2 affect phytoplankton growth and mortality in a variety of different ways. However, in situ responses of natural phytoplankton communities to climate change, as well as its effects on phytoplankton annual cycles, are still largely unknown. Although temperature and UVR have been increasing in temperate latitudes during winter, this season is still particularly neglected in climate change studies, being considered a non-active season regarding phytoplankton growth and production. Additionally, coastal lagoons are highly productive ecosystems and very vulnerable to climate change. This study aims, therefore, to evaluate the short-term effects of increased UVR and CO2 on the composition and growth of winter phytoplankton assemblages in a temperate coastal lagoon. During winter 2012, microcosm experiments were used to evaluate the isolated and combined effects of UVR and CO2, under ambient and high CO2 treatments, exposed to ambient UV levels and photosynthetically active radiation (PAR), or to PAR only. Phytoplankton composition, abundance, biomass and photosynthetic parameters were evaluated during the experiments. Significant changes were observed in the growth of specific phytoplankton groups, leading to changes in community composition. The cyanobacterium Synechococcus was dominant at the beginning of the experiment, but it was negatively affected by UVR and CO2. Diatoms clearly benefited from high CO2 and UVR, particularly Thalassiosira. Despite the changes observed in specific phytoplankton groups, growth and production of the whole phytoplankton community did not show significant responses to UVR and/or CO2.
- Are nutrients and light limiting summer phytoplankton in a temperate coastal lagoon?Publication . Domingues, Rita B.; Guerra, Cátia C.; Barbosa, Ana B.; Galvão, HelenaThe Ria Formosa coastal lagoon is one of the most important and vulnerable ecosystems in Portugal, and it is subjected to strong anthropogenic pressures and natural nutrient inputs associated with coastal upwelling. The aim of this study was to evaluate the occurrence of nutrient and light limitation of phytoplankton growth during the productive period, and assess potential impacts of limitation on ecosystem eutrophication. Inorganic nutrients were added to natural microcosms filled with water collected at the landward and seaward boundaries, in summer 2012. Experimental treatments were incubated in situ under two different light intensities during 24 h. Phytoplankton composition, abundance and biomass, net growth rates and nutrient consumption were evaluated. At the landward location, potential nutrient limitation by nitrogen was observed. Nitrogen addition led to a significant increase in N consumption, resulting in higher phytoplankton growth, mainly diatoms, in all N-enriched treatments, under both light intensities. Significant consumption of silica and phosphorus was not reflected on growth, and it was probably due to luxury consumption. At the seaward station, hytoplankton, mainly cyanobacteria and eukaryotic picophytoplankton, were primarily limited by light, due to a deeper mixed layer. Nutrients were not limiting the phytoplankton growth due to import of nutrients from upwelled waters to the adjacent coastal zone.
- Will nutrient and light limitation prevent eutrophication in an anthropogenically-impacted coastal lagoon?Publication . Domingues, Rita B.; Guerra, Cátia C.; Barbosa, Ana B.; Galvão, Helena M.The Ria Formosa coastal lagoon (southern Portugal) is a highly productive and valuable temperate ecosystem, subjected to strong anthropogenic impacts and highly vulnerable to climate change. The main goal of this work is to understand ecosystem susceptibility to eutrophication, by evaluating the isolated and combined effects of nutrient (N, P and Si) and light enrichments on phytoplankton growth and community composition during autumn, winter and spring. Microcosms of natural phytoplankton collected in the lagoon were subjected to different nutrient and light treatments and incubated in situ for 48 h. Nutrient consumption, and phytoplankton growth and community structure were evaluated using spectrophotometric methods, and inverted and epifluorescence microscopy. Diatoms were the only group potentially limited by nitrogen, and only during spring. Increased nutrient consumptions were observed for all nutrient additions in all seasons, not associated with phytoplankton growth, suggesting that luxury consumption was used to build up intracellular nutrient pools. Responses to light enrichment were inconsistent among phytoplankton groups, probably due to a high taxonomic seasonal variability. Positive responses to light enrichment were mostly observed during winter. Negative synergistic interactions between nutrients and light were also observed. We conclude that eutrophication is currently not a problem in the Ria Formosa coastal lagoon, but future nutrient enrichments may lead to accelerated growth of specific functional groups and species, if light is not limiting.