Repository logo
 
Loading...
Profile Picture
Person

Alçada Baptista Rebelo de Andrade, André

Search Results

Now showing 1 - 5 of 5
  • Tissue responsiveness to estradiol and genistein in the sea bass liver and scale
    Publication . Estêvão, M. Dulce; Andrade, André; Santos, Soraia; Power, Deborah; Pinto, Patricia IS
    As in mammals, estrogens in fish are essential for reproduction but also important regulators of mineral homeostasis. Fish scales are a non-conventional target tissue responsive to estradiol and constitute a good model to study mineralized tissues effects and mechanisms of action of estrogenic compounds, including phytoestrogens. The responsiveness to estradiol and the phytoestrogen genistein, was compared between the scales and the liver, a classical estrogenic target, in sea bass (Dicentrarchus labrax). Injection with estradiol and genistein significantly increased circulating vitellogenin (for both compounds) and mineral levels (estradiol only) and genistein also significantly increased scale enzymatic activities suggesting it increased mineral turnover. The repertoire, abundance and estrogenic regulation of nuclear estrogen receptors (ESR1, 2a and 2b) and membrane G-protein receptors (GPER and GPER-like) were different between liver and scales, which presumably explains the tissue-specific changes detected in estrogen-responsive gene expression. In scales changes in gene expression mainly consisted of small rapid increases, while in liver strong, sustained increases/decreases in gene expression occurred. Similar but not overlapping gene expression changes were observed in response to both estradiol and genistein. This study demonstrates for the first time the expression of membrane estrogen receptors in scales and that estrogens and phytoestrogens, to which fish may be exposed in the wild or in aquaculture, both affect liver and mineralized tissues in a tissue-specific manner. (C) 2015 Elsevier Ltd. All rights reserved.
  • Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier
    Publication . Pinto, Patricia IS; Andrade, André; Moreira, Catarina; Zapater, Cinta; Thorne, Michael A.S.; Santos, Soraia; Estêvão, M. Dulce; Gomez, Ana; Canario, Adelino; Power, Deborah
    Teleost fish scales play important roles in animal protection and homeostasis. They can be targeted by endogenous estrogens and by environmental estrogenic endocrine disruptors. The phytoestrogen genistein is ubiquitous in the environment and in aquaculture feeds and is a disruptor of estrogenic processes in vertebrates. To test genistein disrupting actions in teleost fish we used a minimally invasive approach by analysing scales plucked from the skin of sea bass (Dicentrarchus labrax). Genistein transactivated all three fish nuclear estrogen receptors and was most potent with the Esr2, had the highest efficacy with Esr1, but reached, in all cases, transactivation levels lower than those of estradiol. RNA-seq revealed 254 responsive genes in the sea bass scales transcriptome with an FDR < 0.05 and more than 2-fold change in expression, 1 or 5 days after acute exposure to estradiol or to genistein. 65 genes were specifically responsive to estradiol and 106 by genistein while 83 genes were responsive to both compounds. Estradiol specifically regulated genes of protein/matrix turnover and genistein affected sterol biosynthesis and regeneration, while innate immune responses were affected by both compounds. This comprehensive study revealed the impact on the fish scale transcriptome of estradiol and genistein, providing a solid background to further develop fish scales as a practical screening tool for endocrine disrupting chemicals in teleosts.
  • Estradiol and genistein effects on the sea bass (Dicentrarchus labrax) scales: transcriptome dataset
    Publication . Pinto, Patricia IS; Andrade, André; Thorne, Michael A.S.; Estêvão, M. Dulce; Canario, Adelino; Power, Deborah
    Fish scales are mineralized structures that play important roles in protection and mineral homeostasis. This tissue expresses multiple estrogen receptor subtypes and can be targeted by estrogens or estrogenic endocrine-disrupting compounds, but their effects are poorly explored. The transcriptome data here presented support the findings reported in the research article "Genistein and estradiol have common and specific impacts on the sea bass (Dicentrarchus labrax) skin-scale barrier" [1]. Juvenile sea bass were exposed to estradiol and the phytoestrogen genistein for 1 and 5 days, by intraperitoneal injections, and the effects on scale transcript expression were analysed by RNA-seq using an Illumina Hi-seq 1500. The raw reads of the 30 libraries produced have been deposited in the NCBI-SRA database with the project accession number SRP102504. Mapping of RNA-seq reads against the sea bass reference genome using the Cufflinks/TopHat package identified 371 genes that had significant (FDR<0.05) differential expression with the estradiol or genistein treatments in relation to the control scales at each exposure time, 254 of which presented more than a 2-fold change in expression. The identity of the differentially expressed genes was obtained using both automatic and manual annotations against multiple public sequence databases and they were grouped according to their patterns of expression using hierarchical clustering and heat-maps. The biological processes and KEGG pathways most significantly affected by the estradiol and/or genistein treatments were identified using Cytoscape/ClueGO enrichment analyses.
  • Duplicated membrane estrogen receptors in the European sea bass (Dicentrarchus labrax): Phylogeny, expression and regulation throughout the reproductive cycle
    Publication . Pinto, Patricia IS; Andrade, André; Estêvão, M. Dulce; Alvarado, M. Victoria; Felip, Alicia; Power, Deborah
    The numerous estrogen functions reported across vertebrates have been classically explained by their binding to specific transcription factors, the nuclear estrogen receptors (ERs). Rapid non-genomic estrogenic responses have also been recently identified in vertebrates including fish, which can be mediated by membrane receptors such as the G protein-coupled estrogen receptor (Gper). In this study, two genes for Gper, namely gpera and gperb, were identified in the genome of a teleost fish, the European sea bass. Phylogenetic analysis indicated they were most likely retained after the 3R teleost-specific whole genome duplication and raises questions about their function in male and female sea bass. Gpera expression was mainly restricted to brain and pituitary in both sexes while gperb had a widespread tissue distribution with higher expression levels in gill filaments, kidney and head kidney. Both receptors were detected in the hypothalamus and pituitary of both sexes and significant changes in gpers expression were observed throughout the annual reproductive season. In female pituitaries, gpera showed an overall increase in expression throughout the reproductive season while gperb levels remained constant. In the hypothalamus, gpera had a higher expression during vitellogenesis and decreased in fish entering the ovary maturation and ovulation stage, while gperb expression increased at the final atresia stage. In males, gpers expression was constant in the hypothalamus and pituitary throughout the reproductive cycle apart from the mid- to late testicular development stage transition when a significant up-regulation of gpera occurred in the pituitary. The differential sex, seasonal and subtype-specific expression patterns detected for the two novel gper genes in sea bass suggests they may have acquired different and/or complementary roles in mediating estrogens actions in fish, namely on the neuroendocrine control of reproduction.
  • In vitro screening for estrogenic endocrine disrupting compounds using Mozambique tilapia and sea bass scales
    Publication . Pinto, Patricia; Estêvão, M. Dulce; Santos, Soraia; Andrade, André; Power, Deborah
    A wide range of estrogenic endocrine disruptors (EDCs) are accumulating in the environment and may disrupt the physiology of aquatic organisms. The effects of EDCs on fish have mainly been assessed using reproductive endpoints and in vivo animal experiments. We used a simple non-invasive assay to evaluate the impact of estrogens and EDCs on sea bass (Dicentrarchus labrax) and tilapia (Oreochromis mossambicus) scales. These were exposed to estradiol (E2), two phytoestrogens and six anthropogenic estrogenic/anti-estrogenic EDCs and activities of enzymes related to mineralized tissue turnover (TRAP, tartrate-resistant acid phosphatase and ALP, alkaline phosphatase) were measured. Semi-quantitative RT-PCR detected the expression of both membrane and nuclear estrogen receptors in the scales of both species, confirming scales as a target for E2 and EDCs through different mechanisms. Changes in TRAP or ALP activities after 30 minute and 24 h exposure were detected in sea bass and tilapia scales treated with E2 and three EDCs, although compound-, time- and dose-specific responses were observed for the two species. These results support again that the mineralized tissue turnover of fish is regulated by estrogens and reveals that the scales are a mineralized estrogen-responsive tissue that may be affected by some EDCs. The significance of these effects for whole animal physiology needs to be further explored. The in vitro fish scale bioassay is a promising non-invasive screening tool for E2 and EDCs effects, although the low sensitivity of TRAP/ALP quantification limits their utility and indicates that alternative endpoints are required.