Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Population genetics of Cerastoderma edule in Ria Formosa (southern Portugal): the challenge of understanding an intraspecific hotspot of genetic diversityPublication . Vergara-Chen, Carlos; Rodrigues, Fernanda; Gonzalez-Wangueemert, MercedesCoastal lagoons are highly variable environments that may act as hotspots of genetic diversity as a consequence of their ecological role as nursery habitats of marine species with both ecological and fisheries importance. The edible cockle (Cerastoderma edule) is a commercially important shellfish resource inhabiting coastal lagoons in Europe and their fisheries management urgently needs genetic studies to design appropriate strategies to promote the recovery of exploited populations. The aim of this study was to assess the C. edule genetic diversity and population structure at a small geographic scale, inside Ria Formosa coastal lagoon (southern Portugal) using mitochondrial cytochrome oxidase I sequences in six locations. Outcomes pointed to a common pattern of high haplotype diversity and non-significant genetic structuring inside the Ria Formosa lagoon. A high level of gene flow was detected between all localities and the presence of a single stock from a genetic point of view may be considered for fisheries management purposes. The existence of a high number of haplotypes and high values of haplotype diversity of C. edule in Ria Formosa lagoon could be consistent with the hypothesis that higher genetic diversity is expected in populations occurring in coastal lagoons, suggesting that lagoons could increase standing genetic variation and an adaptive potential of lagoon populations as an ecological response to a highly variable environment.
- Genetic diversity and connectivity remain high in Holothuria polii (Delle Chiaje 1823) across a coastal lagoon-open sea environmental gradientPublication . Vergara-Chen, Carlos; Gonzalez-Wangueemert, Mercedes; Marcos, Concepcion; Perez-Ruzafa, AngelCoastal lagoons represent habitats with widely heterogeneous environmental conditions, particularly as regards salinity and temperature,which fluctuate in both space and time. These characteristics suggest that physical and ecological factors could contribute to the genetic divergence among populations occurring in coastal lagoon and opencoast environments. This study investigates the genetic structure of Holothuria polii at a micro-geographic scale across theMar Menor coastal lagoon and nearbymarine areas, estimating the mitochondrial DNA variation in two gene fragments, cytochrome oxidase I (COI) and 16S rRNA (16S). Dataset of mitochondrial sequences was also used to test the influence of environmental differences between coastal lagoon andmarine waters on population genetic structure. All sampled locations exhibited high levels of haplotype diversity and low values of nucleotide diversity. Both genes showed contrasting signals of genetic differentiation (non-significant differences using COI and slight differences using 16S, which could due to different mutation rates or to differential number of exclusive haplotypes. We detected an excess of recent mutations and exclusive haplotypes, which can be generated as a result of population growth. However, selective processes can be also acting on the gene markers used; highly significant generalized additive models have been obtained considering genetic data from16S gene and independent variables such as temperature and salinity.
- High gene flow promotes the genetic homogeneity of the fish goby Pomatoschistus marmoratus (Risso, 1810) from Mar Menor coastal lagoon and adjacent marine waters (Spain)Publication . Vergara-Chen, Carlos; González-Wangüemert, Mercedes; Marcos, Concepción; Pérez-Ruzafa, ÁngelThe extreme environmental variability of coastal lagoons suggests that physical and ecological factors could contribute to the genetic divergence among populations occurring in lagoon and open-coast environments. In this study we analysed the genetic variability of lagoon and marine samples of the sand goby, Pomatoschistus marmoratus (Risso, 1810) (Pisces: Gobiidae), on the SW Spain coast. A fragment of mitochondrial DNA control region (570 bp) was sequenced for 196 individuals collected in five localities: Lo Pagan, Los Urrutias and Playa Honda (Mar Menor coastal lagoon), and Veneziola and Mazarro´n (Mediterranean Sea). The total haplotype diversity was h = 0.9424 ± 0.0229, and the total nucleotide diversity was p = 0.0108 ± 0.0058. Among-sample genetic differentiation was not significant and small-scale patterns in the distribution of haplotypes were not apparent. Gene flow and dispersal-related life history traits may account for low genetic structure at a small spatial scale. The high genetic diversity found in P. marmoratus increases its potential to adapt to changing conditions of the Mar Menor coastal lagoon.