Repository logo
 
Loading...
Profile Picture
Person

Gonzalez-Wanguemert, Mercedes

Search Results

Now showing 1 - 8 of 8
  • Environmental variables, habitat discontinuity and life history shaping the genetic structure of Pomatoschistus marmoratus
    Publication . Gonzalez-Wangueemert, Mercedes; Vergara-Chen, Carlos
    Coastal lagoons are semi-isolated ecosystems exposed to wide fluctuations of environmental conditions and showing habitat fragmentation. These features may play an important role in separating species into different populations, even at small spatial scales. In this study, we evaluate the concordance between mitochondrial (previous published data) and nuclear data analyzing the genetic variability of Pomatoschistus marmoratus in five localities, inside and outside the Mar Menor coastal lagoon (SE Spain) using eight microsatellites. High genetic diversity and similar levels of allele richness were observed across all loci and localities, although significant genic and genotypic differentiation was found between populations inside and outside the lagoon. In contrast to the FST values obtained from previous mitochondrial DNA analyses (control region), the microsatellite data exhibited significant differentiation among samples inside the Mar Menor and between lagoonal and marine samples. This pattern was corroborated using Cavalli-Sforza genetic distances. The habitat fragmentation inside the coastal lagoon and among lagoon and marine localities could be acting as a barrier to gene flow and contributing to the observed genetic structure. Our results from generalized additive models point a significant link between extreme lagoonal environmental conditions (mainly maximum salinity) and P. marmoratus genetic composition. Thereby, these environmental features could be also acting on genetic structure of coastal lagoon populations of P. marmoratus favoring their genetic divergence. The mating strategy of P. marmoratus could be also influencing our results obtained from mitochondrial and nuclear DNA. Therefore, a special consideration must be done in the selection of the DNA markers depending on the reproductive strategy of the species.
  • Spatial patterns of genetic diversity in Mediterranean eagle owl Bubo bubo populations
    Publication . León-Ortega, Mario; Gonzalez-Wangueemert, Mercedes; Martínez, José E.; Calvo, José F.
    Little information is available on the patterns of genetic connectivity in owls. We studied the genetic structure of the eagle owl Bubo bubo (Linnaeus, 1758) in southeastern Spain at two different spatial scales. Seven microsatellites previously described for this species were used, although only six loci amplified correctly. The observed low genetic variation could be explained by the short dispersal distance, high mortality rate and high degree of monogamy shown by this large nocturnal predator. As expected, the highest genetic isolation was detected in the geographically most isolated population. Significant genetic differentiation was found among study units separated by less than 50 km. The territorial analysis showed interesting connectivity patterns related with the gene flow and turnover rate of the breeding individuals. The lowest genetic diversity was found in the region with the largest population, which could imply incipient inbreeding.
  • Connectivity patterns inferred from the genetic structure of white seabream (Diplodus sargus L.)
    Publication . Gonzalez-Wanguemert, Mercedes; Canovas, Fernando; Perez-Ruzafa, A.; Marcos, C.; Alexandrino, Paulo
    Themarine environment seems, at first sight, to be a homogeneousmediumlacking barriers to species dispersal. Nevertheless, populations of marine species show varying levels of gene flow and population differentiation, so barriers to gene flow can often be detected. Weaimto elucidate the role of oceanographical factors ingenerating connectivity among populations shaping the phylogeographical patterns in the marine realm, which is not only a topic of considerable interest for understanding the evolution ofmarine biodiversity but also formanagement and conservation of marine life. For this proposal,we investigate the genetic structure and connectivity between continental and insular populations ofwhite seabreamin North East Atlantic (NEA) and Mediterranean Sea (MS) aswell as the influence of historical and contemporary factors in this scenario using mitochondrial (cytochrome b) and nuclear (a set of 9 microsatellite) molecular markers. Azores population appeared genetically differentiated in a single cluster using Structure analysis. This result was corroborated by Principal Component Analysis (PCA) and Monmonier algorithm which suggested a boundary to gene flow, isolating this locality. Azorean population also shows the highest significant values of FST and genetic distances for both molecular markers (microsatellites and mtDNA). We suggest that the breakdown of effective genetic exchange between Azores and the others' samples could be explained simultaneously by hydrographic (deep water) and hydrodynamic (isolating current regimes) factors acting as barriers to the free dispersal of white seabream(adults and larvae) and by historical factors which could be favoured for the survival of Azorean white seabream population at the last glaciation. Mediterranean islands show similar genetic diversity to the neighbouring continental samples and nonsignificant genetic differences. Proximity to continental coasts and the current system could promote an optimal larval dispersion among Mediterranean islands (Mallorca and Castellamare) and coasts with high gene flow.
  • Multilocus genetic analyses provide insight into speciation and hybridization in aquatic grasses, genus Ruppia
    Publication . Martínez-Garrido, Jose; Serrão, Ester; Engelen, Aschwin H.; Cox, C. J.; García-Murillo, Pablo; Gonzalez-Wangueemert, Mercedes
    Aquatic plants of the genus Ruppia inhabit some of the most threatened habitats in the world, such as coastal lagoons and inland saline to brackish waters where their meadows play several key roles. The evolutionary history of this genus has been affected by the processes of hybridization, polyploidization, and vicariance, which have resulted in uncertainty regarding the number of species. In the present study, we apply microsatellite markers for the identification, genetic characterization, and detection of hybridization events among populations of putative Ruppia species found in the southern Iberian Peninsula, with the exception of a clearly distinct species, the diploid Ruppia maritima. Microsatellite markers group the populations into genetically distinct entities that are not coincident with geographical location and contain unique diagnostic alleles. These results support the interpretation of these entities as distinct species: designated here as (1) Ruppia drepanensis, (2) Ruppia cf. maritima, and (3) Ruppia cirrhosa. A fourth distinct genetic entity was identified as a putative hybrid between R. cf. maritima and R. cirrhosa because it contained a mixture of microsatellite alleles that are otherwise unique to these putative species. Hence, our analyses were able to discriminate among different genetic entities of Ruppia and, by adding multilocus nuclear markers, we confirm hybridization as an important process of speciation within the genus. In addition, careful taxonomic curation of the samples enabled us to determine the genotypic and genetic diversity and differentiation among populations of each putative Ruppia species. This will be important for identifying diversity hotspots and evaluating patterns of population genetic connectivity. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 00, 000–000.
  • In two waters: contemporary evolution of lagoonal and marine white seabream (Diplodus sargus) populations
    Publication . Gonzalez-Wangueemert, Mercedes; Perez-Ruzafa, Angel
    Brackish water ecosystems are often exposed to wide variations in environmental variables, including temperature and salinity, which may cause strong selective pressures on organisms modifying the genetic patterns of species. The aim of this work was to test whether there is a ‘divergence-with-gene flow’ in coastal lagoon populations of white seabream (Diplodus sargus) (Ria Formosa, S Portugal and Mar Menor, SE Spain) respect to four marine populations, by using partial sequences of cyt b mitochondrial gene and information from nine microsatellite loci. Genetic diversity was highest in both coastal lagoons (Mar Menor and Ria Formosa) considering mitochondrial and nuclear markers. Although some of FST population pairwise comparisons were not significant, analyses of molecular variance (AMOVAs) detected differences between groups (coastal lagoon and marine) close to significance. Also, only two haplotypes (Cytb-17 and Cytb-18) were detected in both coastal lagoon sampling sites and these localities (Mar Menor and Ria Formosa) showed the highest number of singletons, some of them with a high number of mutations, as has been already described for other Mar Menor populations (Pomatochistus marmoratus and Holothuria polii). Also, several tests detected significant positive and balancing selection considering mtDNA and microsatellite data. These data support the hypothesis of selection as one of the drivers of the genetic differences found between coastal lagoon and marine populations. The life strategy adopted by Diplodus sargus in coastal lagoons allows it to decrease its mortality rate and improve the heritability of its genes. Also, the increase time spent in coastal lagoons with different temperatures and salinities favours the fitness selection and the maintenance of exclusive haplotypes and genotypes in coastal lagoon inhabitants favouring the ‘divergence-with-gene-flow’.
  • Genetic considerations on the introduction of farmed fish in marine protected areas: The case of study of white seabream restocking in the Gulf of Castellammare (Southern Tyrrhenian Sea)
    Publication . Gonzalez-Wangueemert, Mercedes; Fernandez, Tomas Vega; Perez-Ruzafa, Angel; Giacalone, Maximilian; D'Anna, Giovanni; Badalamenti, Fabio
    Human exploitation has drastically reduced the abundance and distribution of several marine fish and invertebrate populations through overfishing and habitat destruction. Restocking can potentially mitigate these impacts and help to reconstitute depleted stocks but genetic repercussions must be considered. In the present study, the degree of genetic similarity between white seabream (Diplodus sargus Linnaeus 1758) individuals reared for restocking purposes and the receiving population in the Gulf of Castellammare fishery reserve (Sicily, Italy) was assessed using microsatellites. We also inferred the spatial pattern of the genetic structure of D. sargus and connectivity along Sicilian coasts. The farmed population showed significant heterozygosity deficiency in 6 loci and an important reduction in the number of alleles, which could indicate an incipient inbreeding. Both the farmed population and the target one for restocking (Castellammare fishery reserve), showed high and significant values of genetic differentiation due to different allele frequencies, number of privative alleles and total number of alleles. These findings indicate a low degree of genetic similarity between both populations, therefore this restocking initiative is not advisable. The genetic connectivity pattern, highly consistent with oceanographic currents, identified two distinct metapopulations of white seabream around Sicily. Thus it is recommended to utilize broods from the same metapopulation for restocking purposes to provide a better genetic match to the wild populations.
  • Characterization of 10 new tetranucleotide microsatellite markers for the European eagle owl, Bubo bubo: Useful tools for conservation strategies
    Publication . Leon-Ortega, Mario; Gonzalez-Wangueemert, Mercedes
    Bubo bubo is the largest owl in the world, showing a wide geographical distribution throughout the Palaearctic region. It underwent a demographic decline in many European countries during the last century and was considered “vulnerable” (Annex II of the CITES). Nowadays, it is classified as “Least Concern” according to IUCN. Despite its ecological importance and conservation status, few polymorphic molecular markers are available to study its diversity and population genetics. We report on the isolation and development of 10 new microsatellites for the Eagle owl, B. bubo. All loci (10 tetra-nucleotide) are characterized by high polymorphism levels. Number of alleles ranged from 5 to 13 and expected heterozygosity varied from 0.733 to 0.840. These microsatellites would be very useful to assess the genetic diversity, connectivity patterns and parentage of B. bubo. This information will allow to establish new conservation strategies and improve the management of the species.
  • New highly polymorphic microsatellite markers for the aquatic angiosperm Ruppia cirrhosa reveal population diversity and differentiation
    Publication . Martínez-Garrido, J.; Gonzalez-Wanguemert, Mercedes; Serrão, Ester
    Ruppia cirrhosa is a clonal monoecious plant phylogenetically associated to seagrass families such as Posidoniaceae and Cymodoceaceae. It inhabits shallow waters that are important for productivity and as a biodiversity reservoir. In this study, we developed 10 polymorphic microsatellite loci for R. cirrhosa. Additionally, we obtained cross-amplification for two microsatellites previously described for Ruppia maritima. These 12 markers were tested in four R. cirrhosa populations from the southwest of Europe. The number of alleles per locus was high for most of the markers, ranging from 4 to 13. Two populations (Sicily and Cádiz) showed heterozygote deficit (p < 0.001). The four populations (Sicily, Murcia, Cádiz, and Tavira) were significantly differentiated (FST ≠ 0; p < 0.001), corroborating the usefulness of these microsatellites on R. cirrhosa population genetics.