Repository logo
 
Loading...
Profile Picture
Person

Teotónio Fernandes, Mónica Alexandra

Search Results

Now showing 1 - 5 of 5
  • Post-transcriptional silencing of Bos taurus prion family genes and its impact on granulosa cell steroidogenesis
    Publication . Pimenta, Jorge M.B.G.A.; Pires, Virgínia M.R.; Nolasco, Sofia; Castelo-Branco, Pedro; Marques, Carla C.; Apolónio, Joana; Azevedo, Rita; Fernandes, Mónica T.; Lopes-da-Costa, Luís; Prates, José; Pereira, Rosa M.L.N.
    Prion proteins constitute a major public health concern, which has partly overshadowed their physiological roles in several scenarios. Indeed, these proteins were implicated in male fertility but their role in female fertility is relatively less explored. This study was designed to evaluate the role of SPRN and PRNP prion family genes in bovine follicular steroidogenesis pathways. Post-transcriptional SPRN and PRNP silencing with siRNAs was established in bovine granulosa cell (GC) in vitro culture, and gene expression and progesterone and estradiol concentrations were evaluated. SPRN knockdown, led to a down regulation of CYP11A1 mRNA levels (2.1-fold), and PRNP knockdown led to an upregulation of SPRN mRNA levels (2.3-fold). CYP19A1 expression and estradiol synthesis was not detected in any experimental group. Finally, SPRN knockdown led to a mild reduction in progesterone production in GCs and this was the only experimental group that did not exhibit an increment in progesterone levels after 48 h of culture. As a conclusion, it was possible to detect the expression of the SPRN gene in bovine GCs, a potential interaction between SPRN and PRNP regulation, and the impact of SPRN expression on CYP11A1 and progesterone levels. These findings bring new insights into the role of these genes in ovarian steroidogenesis and female reproductive physiology. (c) 2022 Elsevier Inc. All rights reserved.
  • Tribbles gene expression profiles in colorectal cancer
    Publication . Fernandes, Mónica T.; Yassuda, Victor; Bragança, José; Link, Wolfgang; Ferreira, Bibiana; De Sousa-Coelho, Ana Luísa
    Colorectal cancer (CRC) is the third most common cancer and the second leading cause of death due to cancer in the world. Therefore, the identification of novel druggable targets is urgently needed. Tribbles proteins belong to a pseudokinase family, previously recognized in CRC as oncogenes and potential therapeutic targets. Here, we analyzed the expression of TRIB1, TRIB2, and TRIB3 simultaneously in 33 data sets from CRC based on available GEO profiles. We show that all three Tribbles genes are overrepresented in CRC cell lines and primary tumors, though depending on specific features of the CRC samples. Higher expression of TRIB2 in the tumor microenvironment and TRIB3 overexpression in an early stage of CRC development, unveil a potential and unexplored role for these proteins in the context of CRC. Differential Tribbles expression was also explored in diverse cellular experimental conditions where either genetic or pharmacological approaches were used, providing novel hints for future research. This comprehensive bioinformatic analysis provides new insights into Tribbles gene expression and transcript regulation in CRC.
  • Human stem cells for cardiac disease modeling and preclinical and clinical applications—are we on the road to success?
    Publication . Correia, Cátia; Ferreira, Anita; Fernandes, Mónica T.; Silva, Bárbara M.; Esteves, Filipa; Leitao, Helena; Bragança, José; Calado, Sofia
    Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
  • Charting the path: navigating embryonic development to potentially safeguard against congenital heart defects
    Publication . Bragança, José; Pinto, Rute L.; Silva, Barbara S.; Marques, Nuno; Leitao, Helena; Fernandes, Mónica T.
    Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
  • Cdkn2a inactivation promotes malignant transformation of mouse immature thymocytes before the β-selection checkpoint
    Publication . Catarino, Telmo A.; Pacheco-Leyva, Ivette; Kindi, Faiza Al; Ghezzo, Marinella N.; Fernandes, Mónica T.; Costa, Telma; Rodrigues Dos Santos, Nuno
    CDKN2A deletion is the most frequent genetic alteration in T-cell acute lymphoblastic leukemia (T-ALL), occurring across all molecular and immunophenotypic subtypes. CDKN2A encodes two functionally unrelated tumor suppressor proteins, ARF and INK4a, which are critical regulators of cell cycle and proliferation. Arf has been reported to suppress T-ALL development in post−b-selection thymocytes, but whether CDKN2A acts as a tumor suppressor gene in immature, pre−b-selection thymocytes remains to be elucidated. Resorting to a Rag2-deficient model of T-ALL, driven by the ETV6:: JAK2 fusion, we report that Cdkn2a haploinsufficiency at early stages of T-cell development facilitates leukemia development