Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • A nutritional strategy to promote gilthead seabream performance under low temperatures
    Publication . Teodósio, Rita; Aragão, Cláudia; Colen, R.; Carrilho, Raquel; Dias, Jorge; Engrola, Sofia
    Gilthead seabream (Sparus aurata) is vulnerable to low water temperature, which may occur in the Southern Europe and Mediterranean region during Winter. Fish are poikilothermic animals, therefore feed intake, digestion, metabolism and ultimately growth are affected by water temperature. This study aimed to evaluate growth performance, feed utilisation, nutrient apparent digestibility, and nitrogen losses to the environment in gilthead seabream juveniles reared under low temperature (similar to 13 degrees C). Three isolipid and isoenergetic diets were formulated: a diet similar to a commercial feed (COM) that contained 44% crude protein and 27.5% fishmeal, and two experimental diets with a lower protein content of 42% (ECO and ECOSup). In both ECO diets fishmeal inclusion was reduced (10% in ECO and 7.5% in ECOSup diet) and 15% poultry meal was included. Additionally, the ECOSup diet was supplemented with a mix of feed additives intended to promote fish growth performance and feed intake. The ECO diets presented lower production costs than the COM diet, whilst incorporating more sustainable ingredients. Gilthead seabream juveniles (+/- 154.5 g initial body weight) were randomly assigned to triplicate tanks and fed the diets for 84 days. Fish fed the ECOSup diet attained a similar final body weight than fish fed the COM diet, significantly higher than fish fed the ECO diet. ECOSup fed fish presented significantly higher hepatosomatic index than COM fed fish, most likely due to higher hepatic glycogen reserves. The viscerosomatic index of ECOSup fed fish were significantly lower compared to COM fed fish, which is a positive achievement from a consumer's point of view. ECOSup diet exhibited similar nutrient digestibility than the COM diet. Moreover, feeding fish with the ECO diets resulted in lower faecal nitrogen losses when compared to COM fed fish. The results suggest that feeding gilthead seabream with an eco-friendly diet with a mix of feed additives such as the ECOSup diet, promoted growth and minimised nitrogen losses to the environment. Nutritional strategies that ultimately promote feed intake and diet utilisation are valuable tools that may help conditioning fish to sustain growth even under low temperatures.
  • Glucose metabolism and gene expression in juvenile zebrafish (Danio rerio) challenged with a high carbohydrate diet: effects of an acute glucose stimulus during late embryonic life
    Publication . Rocha, Filipa; Dias, Jorge; Engrola, S.; Gavaia, Paulo; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane
    Knowledge on the role of early nutritional stimuli as triggers of metabolic pathways in fish is extremely scarce. The objective of the present study was to assess the long-term effects of glucose injection in the yolk (early stimulus) on carbohydrate metabolism and gene regulation in zebrafish juveniles challenged with a high-carbohydrate low-protein (HC) diet. Eggs were microinjected at 1 d post-fertilisation (dpf) with either glucose (2 M) or saline solutions. Up to 25 dpf, fish were fed a low-carbohydrate high-protein (LC) control diet, which was followed by a challenge with the HC diet. Survival and growth of 35 dpf juveniles were not affected by injection or the HC diet. Glucose stimulus induced some long-term metabolic changes in the juveniles, as shown by the altered expression of genes involved in glucose metabolism. On glycolysis, the expression levels of hexokinase 1 (HK1) and phosphofructokinase-6 (6PFK) were up-regulated in the visceral and muscle tissues, respectively, of juveniles exposed to the glucose stimulus, indicating a possible improvement in glucose oxidation. On gluconeogenesis, the inhibition of the expression levels of PEPCK in fish injected with glucose suggested lower production of hepatic glucose. Unexpectedly, fructose-1,6-bisphosphatase (FBP) expression was induced and 6PFK expression reduced by glucose stimulus, leaving the possibility of a specific regulation of the FBP-6PFK metabolic cycle. Glucose metabolism in juveniles was estimated using a [C-14]glucose tracer; fish previously exposed to the stimulus showed lower retention of [C-14]glucose in visceral tissue (but not in muscle tissue) and, accordingly, higher glucose catabolism, in comparison with the saline group. Globally, our data suggest that glucose stimulus at embryo stage has the potential to alter particular steps of glucose metabolism in zebrafish juveniles.