Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Phytoplankton composition, growth and production in the Guadiana estuary (SW Iberia): unraveling changes induced after dam constructionPublication . Domingues, Rita B.; Barbosa, Ana B.; Sommer, Ulrich; Galvão, Helena M.Water quality and quantity problems in the Guadiana estuary due to a recently built dam have been predicted, including an enhancement of cyanobacteria blooms. The main goal of this work was thus to describe the present phytoplankton dynamics in relation to its environmental drivers and to evaluate the effects of damming on phytoplankton in the Guadiana estuary. Sampling campaigns were conducted during 2007–2009 in 4 locations of the Guadiana estuary, covering the salinity gradient. Phytoplankton-related and physical–chemical variables were analyzed. Throughout our study, light availability was mainly controlled by suspended sediments and it was much lower than saturating intensities described for phytoplankton growth. Therefore, light was probably limiting to phytoplankton growth throughout the year, especially in the middle and upper estuarine zones. Nitrogen limitation of phytoplankton growth occurred occasionally throughout the study period, especially during spring and summer. Overall, light and nutrient availability were mainly controlled by river flow; anthropogenic sources of nutrients to the estuary were negligible. Phytoplankton showed a unimodal cycle with biomass maximum in late spring/early summer, and the typical seasonal succession of freshwater phytoplankton (diatoms, green algae, cyanobacteria) was observed. Diatoms were the main component of the phytoplankton community and their variability closely followed nitrate and river flow variability. The relative abundance of the main phytoplankton groups changed in relation to the period before dam construction, with a decrease on cyanobacteria contribution to total abundance. The environmental perturbation induced by dam construction has now stabilized and resulted in an overall decrease in nutrient concentrations, an increase in light availability and a decrease in cyanobacteria abundance.
- Ammonium, nitrate and phytoplankton interactions in a freshwater tidal estuarine zone: potential effects of cultural eutrophicationPublication . Domingues, Rita B.; Barbosa, Ana; Sommer, Ulrich; Galvão, Helena M.Nitrate and ammonium are the most important nitrogen sources for phytoplankton growth. Differential utilization of inorganic nitrogenous compounds by phytoplankton has been observed and may have significant impacts on primary productivity at local scales. We used enrichment experiments with natural phytoplankton populations from the freshwater tidal zone of the Guadiana estuary, a coastal ecosystem increasingly subjected to anthropogenic influences, to study the effects of nitrate and ammonium on N-consumption and phytoplankton growth. In addition, we used combined additions of nitrate and ammonium to understand the inhibitory effect of ammonium over nitrate uptake. Ammonium concentrations in the freshwater tidal reaches of the Guadiana estuary throughout the sampling period were too low to exert an inhibitory effect on nitrate uptake or a toxic effect on phytoplankton growth. Nitrate was clearly the main nitrogen source for phytoplankton at the study site. Overall, nitrate seemed to become limiting at concentrations lower than 20 lM and N-limitation was particularly significant during summer. A trend of decreasing nitrate uptake with increasing ammonium concentrations and uptake suggested an overall preference for ammonium. However, preference for ammonium was group-specific, and it was observed mainly in green algae and cyanobacteria. In fact, cyanobacteria relied only on ammonium as their N-source. On the contrary, diatoms preferred nitrate, and did not respond to ammonium additions. The increasing eutrophication in the Guadiana estuary and particularly increased inputs of nitrogen as ammonium due to urban waste effluents may result in a shift in phytoplankton community composition, towards a dominance of cyanobacteria and green algae.