Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- A synthesis of European seahorse taxonomy, population structure, and habitat use as a basis for assessment, monitoring and conservationPublication . Woodall, Lucy C.; Otero-Ferrer, Francisco; Correia, Miguel; Curtis, Janelle M. R.; Garrick-Maidment, Neil; Shaw, Paul W.; Koldewey, Heather J.Accurate taxonomy, population demography, and habitat descriptors inform species threat assessments and the design of effective conservation measures. Here we combine published studies with new genetic, morphological and habitat data that were collected from seahorse populations located along the European and North African coastlines to help inform management decisions for European seahorses. This study confirms the presence of only two native seahorse species (Hippocampus guttulatus and H. hippocampus) across Europe, with sporadic occurrence of non-native seahorse species in European waters. For the two native species, our findings demonstrate that highly variable morphological characteristics, such as size and presence or number of cirri, are unreliable for distinguishing species. Both species exhibit sex dimorphism with females being significantly larger. Across its range, H. guttulatus were larger and found at higher densities in cooler waters, and individuals in the Black Sea were significantly smaller than in other populations. H. hippocampus were significantly larger in Senegal. Hippocampus guttulatus tends to have higher density populations than H. hippocampus when they occur sympatrically. Although these species are often associated with seagrass beds, data show both species inhabit a wide variety of shallow habitats and use a mixture of holdfasts. We suggest an international mosaic of protected areas focused on multiple habitat types as the first step to successful assessment, monitoring and conservation management of these Data Deficient species.
- The paradox of retained genetic diversity of Hippocampus guttulatus in the face of demographic declinePublication . Stacy, Rupert; Palma, Jorge; Correia, Miguel; Wilson, Anthony B.; Andrade, Jose; Castilho, RitaGenetic diversity is the raw foundation for evolutionary potential. When genetic diversity is significantly reduced, the risk of extinction is heightened considerably. The long-snouted seahorse (Hippocampus guttulatus) is one of two seahorse species occurring in the North-East Atlantic. The population living in the Ria Formosa (South Portugal) declined dramatically between 2001 and 2008, prompting fears of greatly reduced genetic diversity and reduced effective population size, hallmarks of a genetic bottleneck. This study tests these hypotheses using samples from eight microsatellite loci taken from 2001 and 2013, on either side of the 2008 decline. The data suggest that the population has not lost its genetic diversity, and a genetic bottleneck was not detectable. However, overall relatedness increased between 2001 to 2013, leading to questions of future inbreeding. The effective population size has seemingly increased close to the threshold necessary for the population to retain its evolutionary potential, but whether these results have been affected by sample size is not clear. Several explanations are discussed for these unexpected results, such as gene flow, local decline due to dispersal to other areas of the Ria Formosa, and the potential that the duration of the demographic decline too short to record changes in the genetic diversity. Given the results presented here and recent evidence of a second population decline, the precise estimation of both gene flow and effective population size via more extensive genetic screening will be critical to effective population management.