Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Gla-Rich Protein Is a Novel Vitamin K-Dependent Protein Present in Serum That Accumulates at Sites of Pathological Calcifications
    Publication . Viegas, Carla; Cavaco, Sofia; Neves, Pedro L.; Ferreira, Ana; Joao, Alexandre; Williamson, Matthew K.; Price, Paul A.; Cancela, M. Leonor; Simes, Dina
    Mineralization of soft tissues is an abnormal process that occurs in any body tissue and can greatly increase morbidity and mortality. Vitamin K-dependent (VKD) proteins play a crucial role in these processes; matrix Gla protein is considered one of the most relevant physiological inhibitors of soft tissue calcification know to date. Several studies have suggested that other, still unknown, VKD proteins might also be involved in soft tissue calcification pathologies. We have recently identified in sturgeon a new VKD protein, Gla-rich protein (GRP), which contains the highest ratio between number of Gla residues and size of the mature protein so far identified. Although mainly expressed in cartilaginous tissues of sturgeon, in rat GRP is present in both cartilage and bone. We now show that GRP is a circulating protein that is also expressed and accumulated in soft tissues of rats and humans, including the skin and vascular system in which, when affected by pathological calcifications, GRP accumulates at high levels at sites of mineral deposition, indicating an association with calcification processes. The high number of Gla residues and consequent mineral binding affinity properties strongly suggest that GRP may directly influence mineral formation, thereby playing a role in processes involving connective tissue mineralization. (Am J Pathol 2009, 175:2288-2298; DOI; 10.2353/ajpath.2009.090474)
  • Sturgeon osteocalcin shares structural features with matrix gla protein evolutionary relationship and functional implications
    Publication . S B Viegas, Carla; Simes, Dina; Williamson, Matthew K.; Cavaco, Sofia; Laizé, Vincent; Price, Paul A.; Leonor Cancela, M.
    Osteocalcin (OC) and matrix Gla protein (MGP) are considered evolutionarily related because they share key structural features, although they have been described to exert different functions. In this work, we report the identification and characterization of both OC and MGP from the Adriatic sturgeon, a ray-finned fish characterized by a slow evolution and the retention of many ancestral features. Sturgeon MGP shows a primary structure, post-translation modifications, and patterns of mRNA/protein distribution and accumulation typical of known MGPs, and it contains seven possible Gla residues that would make the sturgeon protein the most gamma-carboxylated among known MGPs. In contrast, sturgeon OC was found to present a hybrid structure. Indeed, although exhibiting protein domains typical of known OCs, it also contains structural features usually found in MGPs (e. g. a putative phosphorylated propeptide). Moreover, patterns of OC gene expression and protein accumulation overlap with those reported for MGP; OC was detected in bone cells and mineralized structures but also in soft and cartilaginous tissues. We propose that, in a context of a reduced rate of evolution, sturgeon OC has retained structural features of the ancestral protein that emerged millions of years ago from the duplication of an ancient MGP gene and may exhibit intermediate functional features.