Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Genotoxicity of copper oxide and silver nanoparticles in the mussel Mytilus galloprovincialisPublication . Gomes, Tânia; Araújo, Olinda; Pereira, Rita; Catarina Almeida, Ana; Cravo, Alexandra; Bebianno, Maria JoãoThough there is some information on cytotoxicity of copper nanoparticles and silver nanoparticles on human cell lines, there is no information on their genotoxic and cytotoxic behaviour in bivalve molluscs. The aim of this study was to investigate the genotoxic impact of copper oxide and silver nanoparticles using mussels Mytilus galloprovincialis. Mussels were exposed to 10 μg L⁻¹ of CuO nanoparticles and Cu²⁺ and Ag nanoparticles and Ag⁺ for 15 days to assess genotoxic effects in hemocytes using the comet assay. The results obtained indicated that copper and silver forms (nanoparticles and ionic) induced DNA damage in hemolymph cells and a time-response effect was evident when compared to unexposed mussels. Ionic forms presented higher genotoxicity than nanoparticles, suggesting different mechanisms of action that may be mediated through oxidative stress. DNA strand breaks proved to be a useful biomarker of exposure to genotoxic effects of CuO and Ag nanoparticles in marine molluscs.
- Genotoxicity in two bivalve species from a coastal lagoon in the south of PortugalPublication . Catarina Almeida, Ana; G. Pereira, Catarina; Gomes, Tânia; Cardoso, Cátia; Bebianno, Maria João; Cravo, AlexandraDNA damage was evaluated by comet assay in the haemolymph of two bivalve species Ruditapes decussatus and Mytilus galloprovincialis from the Ria Formosa lagoon (south Coast of Portugal). Clams and mussels were sampled from sites close to each other to determine interspecific responses to similar environmental conditions, considering also seasonal and gender differences. Coupled with genotoxic effect, another damage biomarker (lipid peroxidation) was analysed to verify if the conditions that instigate DNA damage can be related with injury to cell membranes. For both species, DNA damage was low, reflecting the low levels of genotoxic contaminants in the lagoon, and no interspecific differences were found. However, seasonal differences were established for both bivalve species, reflecting higher environmental stress in summer. Regarding gender susceptibility, only clams showed differences in percentage of Tail DNA, with females more sensitive to DNA damage than males. Additionally, results for clams point out that factors responsible for LPO may not be the same as those causing genotoxicity. This study demonstrated that DNA damage is a sensitive biomarker to discriminate spatial, temporal and gender differences, being an appropriate biomarker for genotoxicity evaluation even in places of low contamination, such as the Ria Formosa lagoon.
- DNA damage as a biomarker of genotoxic contamination in Mytilus galloprovincialis from the south coast of PortugalPublication . Catarina Almeida, Ana; G. Pereira, Catarina; Gomes, Tânia; Bebianno, Maria João; Cravo, AlexandraDNA damage was evaluated in the haemolymph of Mytilus galloprovincialis from nine sites along the south coast of Portugal using the comet assay. DNA damage was low, in the same range of sites considered to suffer low impact from genotoxic contaminants. Even so, differences between sites, seasons and genders were found. Highest values were in mussels from the main estuaries and the fishery harbour, reflecting higher genotoxin levels, whereas the lowest values can be used as a baseline for future work. Non-contaminant related factors (e.g. temperature and oxygen) were also shown to influence DNA damage. Between seasons, highest values were in summer related not only to the increase of tourism in this region (∼10-fold), but also to temperature. Between genders, males were found to be more sensitive. The condition index was also generally higher in summer. Lipid peroxidation, another damage biomarker, was measured in gills to assess if there is any association between the responses of both biomarkers and if they are similarly affected by the same environmental conditions. LPO like DNA damage was higher in summer. This work confirms that DNA damage is a sensitive biomarker to discriminate genotoxic contamination, even in areas considered to suffer low impact from genotoxins.