Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora speciesPublication . Corcobado, T.; Miranda-Torres, J. J.; Martin-Garcia, J.; Jung, Thomas; Solla, A.Forests in Europe are threatened by increased diversity of Phytophthora species, but effects on trees of simultaneous infections by Phytophthora and ecological consequences of their coexistence are unknown. This study explored variation in early survival of Quercus ilex to Phytophthora infections and assessed interactions between Phytophthora species when trees were co-infected. Three Phytophthora species (P. cinnamomi, P. gonapodyides and P. quercina), seeds from 16 populations of Q. ilex (ballota and ilex subspecies) and two infection times were used as sources of variation in two experiments. The influence of Phytophthora species, Q. ilex subspecies and populations on plant germination and survival were analysed using generalized linear mixed models and survival analysis techniques. Germination rates were not influenced by Phytophthora spp. (P = 0.194) but by the subspecies and populations of Q. ilex (P < 0.001). In Phytophthora-infested soils, Q. ilex subsp. ilex germinated at higher rates than Q. ilex subsp. ballota. Plant survival was strongly influenced by Phytophthora species (P < 0.001), not by the subspecies and populations of Q. ilex. Seedling mortality was reduced and delayed if a less virulent Phytophthora species infected plants prior to infection by a more virulent Phytophthora species. The results help to explain oak decline syndrome and the lack of natural and artificial regeneration of Q. ilex forests. Lack of interspecific variability of early survival to Phytophthora spp. discourages direct sowing for artificial reforestation programmes. Large, thick seeds, giving plants rapid growth, are advantageous traits when soils are infested with Phytophthora spp.
- Diversity of Phytophthora Species from Declining Mediterranean Maquis Vegetation, including Two New Species, Phytophthora crassamura and P. ornamentata sp nov.Publication . Scanu, Bruno; Linaldeddu, Benedetto T.; Deidda, Antonio; Jung, ThomasThe Mediterranean basin is recognized as a global biodiversity hotspot accounting for more than 25,000 plant species that represent almost 10% of the world's vascular flora. In particular, the maquis vegetation on Mediterranean islands and archipelagos constitutes an important resource of the Mediterranean plant diversity due to its high rate of endemism. Since 2009, a severe and widespread dieback and mortality of Quercus ilex trees and several other plant species of the Mediterranean maquis has been observed in the National Park of La Maddalena archipelago (northeast Sardinia, Italy). Infected plants showed severe decline symptoms and a significant reduction of natural regeneration. First studies revealed the involvement of the highly invasive wide-host range pathogen Phytophthora cinnamomi and several fungal pathogens. Subsequent detailed research led to a better understanding of these epidemics showing that multiple Phytophthora spp. were involved, some of them unknown to science. In total, nine Phytophthora species were isolated from rhizosphere soil samples collected from around symptomatic trees and shrubs including Asparagus albus, Cistus sp., Juniperus phoenicea, J. oxycedrus, Pistacia lentiscus and Rhamnus alaternus. Based on morphological characters, growth-temperature relations and sequence analysis of the ITS and cox1 gene regions, the isolates were identified as Phytophthora asparagi, P. bilorbang, P. cinnamomi, P. cryptogea, P. gonapodyides, P. melonis, P. syringae and two new Clade 6 taxa which are here described as P. crassamura sp. nov. and P. ornamentata sp. nov. Pathogenicity tests supported their possible involvement in the severe decline that is currently threatening the Mediterranean maquis vegetation in the La Maddalena archipelago.
- Diversity of Phytophthora species in natural ecosystems of Taiwan and association with disease symptomsPublication . Jung, Thomas; Chang, T. T.; Bakonyi, J.; Seress, D.; Perez-Sierra, A.; Yang, X.; Hong, C.; Scanu, B.; Fu, C. H.; Hsueh, K. L.; Maia, Cristiana; Abad-Campos, P.; Leon, M.; Horta Jung, MaríliaIn 2013 a survey of Phytophthora diversity was performed in 25 natural and seminatural forest stands and 25 rivers in temperate montane and subtropical lowland regions of Taiwan. Using baiting assays, 10 described species and 17 previously unknown taxa of Phytophthora were isolated from 71.5% of the 144 rhizosphere soil samples from 33 of 40 tree species sampled in 24 forest stands, and from 19 rivers: P. capensis, P. citrophthora, P. plurivora, P. tropicalis, P. citricola VII, P. sp. x botryosa-like, P. sp. x meadii-like and P. sp. occultans-like from Clade 2; P. palmivora from Clade 4; P. castaneae and P. heveae from Clade 5; P. chlamydospora and P. sp. forestsoil-like from Clade 6; P. cinnamomi (Pc), P. parvispora, P. attenuata nom. prov., P. flexuosa nom. prov., P. formosa nom. prov., P. intricata nom. prov., P. x incrassata nom. prov. and P. x heterohybrida nom. prov. from Clade 7; P. sp. palustris and five new hybrid species from Clade 9. The A1 mating type of Pc was widespread in both montane and lowland forests and rarely associated with disease, whereas the A2 mating type was limited to lowland forests and in some cases causing severe dieback. Most other Phytophthora species were not associated with obvious disease symptoms. It is concluded that (i) Taiwan is within the centre of origin of most Phytophthora taxa found, (ii) Pc A2 is an introduced invasive pathogen, and (iii) interspecific hybridizations play a major role in speciation and species radiations in diverse natural ecosystems.