Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, II
    Publication . Samko, S.; Shargorodsky, E.; Vakulov, B.
    In [S.G. Samko, B.G. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, J. Math. Anal. Appl. 310 (2005) 229-246], Sobolev-type p((.)) -> q((.))-theorems were proved for the Riesz potential operator I-alpha in the weighted Lebesgue generalized spaces L-p(.)(R-n, p) with the variable exponent p(x) and a two-parameter power weight fixed to an arbitrary finite point x(0) and to infinity, under an additional condition relating the weight exponents at x(0) and at infinity. We show in this note that those theorems are valid without this additional condition. Similar theorems for a spherical analogue of the Riesz potential operator in the corresponding weighted spaces L-p(.) (S-n, p) on the unit sphere S-n in Rn+1 are also improved in the same way. (c) 2006 Elsevier Inc. All rights reserved.
  • Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators
    Publication . Samko, Stefan; Vakulov, B.
    We prove Sobolev-type p((.)) -> q ((.))-theorems for the Riesz potential operator I-alpha in the weighted Lebesgue generalized spaces L-p(.)(R-n, p) with the variable exponent p (x) and a two-parametrical power weight fixed to an arbitrary finite point and to infinity, as well as similar theorems for a spherical analogue of the Riesz potential operator in the corresponding weighted spaces L-p(.)(S-n, p) on the unit sphere S-n in Rn+1. (c) 2005 Elsevier Inc. All rights reserved.