Logo do repositório
 
A carregar...
Miniatura
Publicação

Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, II

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
handle11392.pdf112.25 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

In [S.G. Samko, B.G. Vakulov, Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators, J. Math. Anal. Appl. 310 (2005) 229-246], Sobolev-type p((.)) -> q((.))-theorems were proved for the Riesz potential operator I-alpha in the weighted Lebesgue generalized spaces L-p(.)(R-n, p) with the variable exponent p(x) and a two-parameter power weight fixed to an arbitrary finite point x(0) and to infinity, under an additional condition relating the weight exponents at x(0) and at infinity. We show in this note that those theorems are valid without this additional condition. Similar theorems for a spherical analogue of the Riesz potential operator in the corresponding weighted spaces L-p(.) (S-n, p) on the unit sphere S-n in Rn+1 are also improved in the same way. (c) 2006 Elsevier Inc. All rights reserved.

Descrição

Palavras-chave

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo

Editora

Academic Press Inc Elsevier Science

Licença CC

Métricas Alternativas