Repository logo
 

Search Results

Now showing 1 - 3 of 3
  • Leaf proteome modulation and cytological features of seagrass Cymodocea nodosa in response to long-term high CO2 exposure in volcanic vents
    Publication . Piro, Amalia; Bernardo, Letizia; Serra, Ilia Anna; Barrote, Isabel; Olivé, Irene; Costa, Monya M.; Lucini, Luigi; Santos, Rui; Mazzuca, Silvia; Silva, João
    Seagrass Cymodocea nodosa was sampled off the Vulcano island, in the vicinity of a submarine volcanic vent. Leaf samples were collected from plants growing in a naturally acidified site, influenced by the long-term exposure to high CO2 emissions, and compared with others collected in a nearby meadow living at normal pCO2 conditions. The differential accumulated proteins in leaves growing in the two contrasting pCO2 environments was investigated. Acidified leaf tissues had less total protein content and the semi-quantitative proteomic comparison revealed a strong general depletion of proteins belonging to the carbon metabolism and protein metabolism. A very large accumulation of proteins related to the cell respiration and to light harvesting process was found in acidified leaves in comparison with those growing in the normal pCO2 site. The metabolic pathways linked to cytoskeleton turnover also seemed affected by the acidified condition, since a strong reduction in the concentration of cytoskeleton structural proteins was found in comparison with the normal pCO2 leaves. Results coming from the comparative proteomics were validated by the histological and cytological measurements, suggesting that the long lasting exposure and acclimation of C. nodosa to the vents involved phenotypic adjustments that can offer physiological and structural tools to survive the suboptimal conditions at the vents vicinity.
  • Genomewide transcriptional reprogramming in the seagrass Cymodocea nodosa under experimental ocean acidification
    Publication . Ruocco, Miriam; Musacchia, Francesco; Olivé, Irene; Costa, Monya; Barrote, Isabel; Santos, Rui; Sanges, Remo; Procaccini, Gabriele; Silva, João
    Here, we report the first use of massive-scale RNA-sequencing to explore seagrass response to CO2-driven ocean acidification (OA). Large-scale gene expression changes in the seagrass Cymodocea nodosa occurred at CO2 levels projected by the end of the century. C. nodosa transcriptome was obtained using Illumina RNA-Seq technology and de novo assembly, and differential gene expression was explored in plants exposed to short-term high CO2/low pH conditions. At high pCO(2), there was a significant increased expression of transcripts associated with photosynthesis, including light reaction functions and CO2 fixation, and also to respiratory pathways, specifically for enzymes involved in glycolysis, in the tricarboxylic acid cycle and in the energy metabolism of the mitochondrial electron transport. The upregulation of respiratory metabolism is probably supported by the increased availability of photo-synthates and increased energy demand for biosynthesis and stress-related processes under elevated CO2 and low pH. The upregulation of several chaperones resembling heat stress-induced changes in gene expression highlighted the positive role these proteins play in tolerance to intracellular acid stress in seagrasses. OA further modifies C. nodosa secondary metabolism inducing the transcription of enzymes related to biosynthesis of carbon-based secondary compounds, in particular the synthesis of polyphenols and isoprenoid compounds that have a variety of biological functions including plant defence. By demonstrating which physiological processes are most sensitive to OA, this research provides a major advance in the understanding of seagrass metabolism in the context of altered seawater chemistry from global climate change.
  • Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum
    Publication . Sordo, Laura; Santos, Rui; Barrote, Isabel; Silva, João
    The combination of ocean acidification (OA) and global warming is expected to have a significant effect on the diversity and functioning of marine ecosystems, particularly on calcifying algae such as rhodoliths (maërl) that form extensive beds worldwide, from polar to tropical regions. In addition, the increasing frequency of extreme events, such as heat waves, threatens coastal ecosystems and may affect their capacity to fix blue carbon. The few studies where the simultaneous effects of both temperature and CO2 were investigated have revealed contradictory results. To assess the effect that high temperature spells can have on the maërl beds under OA, we tested the short-time effects of temperature and CO2 on the net photosynthesis, respiration, and calcification of the recently described species Phymatolithon lusitanicum, the most common maërl species of southern Portugal. Photosynthesis, calcification, and respiration increased with temperature, and the differences among treatments were enhanced under high CO2. We found that in the short term, the metabolic rates of Phymatolithon lusitanicum will increase with CO2 and temperature as will the coupling between calcification and photosynthesis. However, under high CO2, this coupling will favor photosynthesis over calcification, which, in the long term, can have a negative effect on the blue carbon fixing capacity of the maërl beds from southern Portugal.