Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Integrated multi-trophic aquaculture systems: energy transfers and food web organization in coastal earthen pondsPublication . Gamito, Sofia; Quental-Ferreira, H; Parejo, A; Aubin, J; Christensen, V; Cunha, METhree Ecopath models were built to reproduce 3 experimental treatments carried out in earthen ponds located in Olhao, southern Portugal, to understand the energy transferred and the ecosystem state in integrated multi-trophic aquaculture (IMTA). These earthen ponds behave as simplified ecosystems or mesocosms, with well-defined borders, where the relationships between trophic groups can be described through ecosystem modeling. Different combinations of species were produced in these ponds, corresponding to the 3 treatments: (1) fish, oysters and macroalgae (FOM); (2) fish and oysters (FO); and (3) fish and macroalgae (FM). The managed species were meagre Argyrosomus regius, white seabream Diplodus sargus, flathead grey mullet Mugil cephalus, Japanese oyster Crassostrea gigas and sea lettuce Ultra spp. The results showed that the total amount of energy throughput was 15 to 17 times higher when compared with an equivalent naturalized system. The high biomass and low recycling indicated an immature system with low resilience and low stability that demands high rates of water renewal and aeration to maintain good water-quality levels for finfish production. The addition of oysters and macroalgae in the FOM treatment appeared to improve the water quality, since oysters controlled the excess of phytoplankton produced in the ponds by ingesting a fair amount of the phytoplankton, while the macroalgae helped in the absorption of excess nutrients and created a habitat for periphyton and associated macroinvertebrates. Some ecosystem attributes of the FOM ponds approached the values of the naturalized model, suggesting a possible path towards more sustainable aquaculture.
- Methodology for assessing the individual role of fish, oyster, phytoplankton and macroalgae in the ecology of integrated production in earthen pondsPublication . Cunha, M.E.; Quental-Ferreira, H.; Parejo, A.; Gamito, Sofia; Ribeiro, L.; Moreira, M.; Monteiro, I.; Soares, F.; Pousão-Ferreira, PedroProduction costs in extensive and semi-intensive fish culture in earthen ponds are often too high to offer sustainable economic activity due to the low productivity of these systems. The right combination of commercial finfish species with inorganic (primary producers) and organic extractive (bivalves) species in Integrated MultiTrophic Aquaculture (IMTA) create a balanced system with higher profitability and risk reduction. To achieve this, it is crucial to understand the role of each functional groups within the system what we did by comparing three different IMTA production three different IMTA production treatments with distinct combinations of trophic levels: •fish, filter feeders, phytoplankton and macroalgae,•fish, filter feeders and phytoplankton•fish, phytoplankton and macroalgae Each treatment was carried out in two similar ponds under semi-intensive conditions and flow through system, in a total of 6 earthen ponds of 500 m2 surface and depth of 1.5 m. Results showed that the presence of oysters in the ponds enhanced water quality by decreasing turbidity and by controlling phytoplankton which led to regulation of dissolved oxygen levels. The enhanced water quality in these systems lead to improved fish performance and higher biomass production contributing to greater profitability. The combination of fish, oyster, phytoplankton and macroalgae was particularly good providing much more fish supply compared with the other two treatments. •Oysters enhanced water quality in the ponds by decreasing turbidity and controlling phytoplankton which regulated the dissolved oxygen levels.•The enhanced water quality in systems with oysters improve fish performance resulting in higher biomass production and greater profitability.•The combination of fish, oyster, phytoplankton and macroalgae was particularly good providing much more fish supply compared with the other two treatments.