Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Holiday rentals in cultural tourism destinations: a comparison of booking.com-based daily rate estimation for Seville and PortoPublication . Solano-Sánchez, Miguel Ángel; Santos, José António C.; Santos, Margarida Custódio; Fernández-Gámez, Manuel ÁngelMultiple variables determine holiday rentals’ price composition in cultural tourism destinations. This study sought, first, to test a model including the variables with the greatest impact on tourism accommodations’ prices in these destinations and, second, to demonstrate the proposed model’s applicability to cultural city destinations by identifying the adaptations needed to apply it to different contexts. Two cities were selected for the model application—Seville in Spain and Porto in Portugal—both of which are located in different countries and are well-known cultural tourism destinations. The data were extracted from Booking.com because this accommodations platform has adapted its offer to the sharing economy, becoming one of the most important players in the market, and because research on holiday rentals using data from Booking.com is scarce. The results show that the variables used are relevant and highlight the adaptations necessary for specific cultural tourism destinations, thereby indicating that the model can be applied to all cultural tourism destinations. The proposed approach can help holiday rental managers select the correct tools for determining their accommodation units’ daily rates according to their product and marketing context’s characteristics.
- Dataset for holiday rentals’ daily rate pricing in a cultural tourism destinationPublication . Solano Sánchez, Miguel Ángel; Núñez Tabales, Julia Margarita; Caridad y Ocerin, José María; Santos, José António C.; Santos, Margarida CustódioThis data article describes a holiday rental dataset from a medium-size cultural city destination. Daily rate and variables related to location, size, amenities, rating, and seasonality are highlighted as the main features. The data was extracted from Booking.com, legal registration of the accommodation (RTA) and Google Maps, among other sources. This dataset contains data from 665 holiday rentals offered as entire flat (rent per room was discarded), with a total of 1623 cases and 28 variables considered. Regarding data extraction, RTA is ordered by registration number, which is taken and, through a Google search with the following structure: "apartment registration no. + Booking + Seville", the holiday rental profile in Booking.com is found. Then, it is verified that both the address of the accommodation and the registration number match in RTA and Booking.com, proceeding with data extraction to a Microsoft Excel's file. Google Maps is used to determine the minutes spent walking from the accommodation to the spot of maximum tourist interest of the city. A price index based on the average price per square meter of real estate per district is also incorporated to the dataset, as well as a visual appeal rating made by the authors of every holiday rental based on its Booking.com photos profile. Only cases with complete data were considered. A statistics summary of all variables of the data collected is presented. This dataset can be used to develop an estimation model of daily prices of stay in holiday rentals through predetermined variables. Econometrics methodologies applied to this dataset can also allow testing which variables included affecting the composition of holiday rentals' daily rates and which not, as well as determining their respective influence on daily rates.