Loading...
11 results
Search Results
Now showing 1 - 10 of 11
- Seasonal variations of waterbird ecological networks under different saltpans managementPublication . Chefaoui, RosaHabitat change has increased the loss of wetlands and impacted highly on coastal biodiversity. Consequently, wetland-dependent species such as waterbirds have experienced a decline in their populations. This study pro poses an application of bipartite networks using both the sampled sites and species as nodes to assess seasonal variations in waterbirds composition and habitat specialization in response to the abandonment of saltpans. The sampling was carried out in active and abandoned saltpans of the Ria Formosa (Portugal) over four sampling periods to evaluate the temporal change in waterbird communities. Abundance was twice and species richness 14% higher in active saltpans than in abandoned ones. About 60% of the waterbirds indicated a high specificity towards active saltpans. Saltpans showed a high β-diversity and seasonal dynamic of waterbird community composition. Network dissimilarity across the year was dominated by turnover of the edges rather than species turnover. Dynamics in network structure and composition seemed to be related to bird dispersal, migration phenology, and habitat specialist strategies. Overall, this study highlights the importance of preserving the ac tivity of saltpans as it conditions abundance, richness and dynamics of waterbird populations. Continued efforts are needed to reduce threats to coastal wetlands and restore abandoned saltpans worldwide, since these are key habitats for the conservation of resident and migratory waterbirds.
- Predicted regime shift in the seagrass ecosystem of the Gulf of Arguin driven by climate changePublication . Chefaoui, Rosa M.; Duarte, Carlos M.; Tavares, Ana I; Frade, Duarte; Sidi Cheikh, M.A.; Abdoull Ba, M.; Serrao, EsterThe Banc d′Arguin is a marine ecosystem of global conservation significance, the largest bird sanctuary of western Africa, supported by one of the most extensive seagrass beds in the world composed by three seagrass species, two temperate near their southern limit (Zostera noltei and Cymodocea nodosa) and one tropical at its northern limit (Halodule wrightii). Here we predict the fate of this seagrass ecosystem under climate change scenarios during the 21st century, using species distribution models and sea level rise estimates. We forecast a probable decline in total seagrass area of 3340 Km2 (78%) by 2100, involving the loss of both temperate seagrasses (Z. noltei, C. nodosa), the foundational ecosystem components. By 2050, only the tropical species (H. wrightii) would remain, which forms thin and sparse shallow stands functionally distinct from the previous tall dense meadows that span wider vertical ranges. Intertidal flats, the essential bird foraging habitats, would become unvegetated and also suffer a major reduction in area (114 km2 by 2050, 587 km2 by 2100). The large projected loss of foundational seagrass species portends a collapse of major ecosystem functions with profound impacts on biodiversity, fishery resources and ecosystem services.
- Abandonment of traditional saltworks facilitates degradation of halophytic plant communities and Carpobrotus edulis invasionPublication . Chefaoui, Rosa; Chozas, SergioAims In Mediterranean countries, traditional salt exploitation has been practiced over centuries. However, there is a progressive reduction of active saltworks, causing changes in the adjacent halophytic communities and, ultimately, the invasion by opportunistic plant species. Assessing the impact of land use change is key to understanding and protecting these fragile wetland ecosystems. Here, we explore how the abandonment of saltworks is impacting plant communities. We assess if the reduction in saltworks activity alters the composition of protected halophytic communities and favours the invasion by Carpobrotus edulis, an invasive species in many coastal regions throughout the world. Location The Natural Park of Ria Formosa (Algarve, Portugal). Methods We studied variations in the structure of halophytic communities affected to different degrees by C. edulis over three saltworks land use regimes in the Ria Formosa. Plant cover and soil salinity were estimated in a total of 60 transects pertaining to two saltworks complexes harbouring different land use and hydrologic regimes. We performed a non-metric multidimensional scaling ordination of saltworks based on plant cover and identified the indicator species of each saltworks class. Results We found that plant communities significantly varied among types of saltworks according to the pattern of soil salinity and hydrologic regime. We identified C. edulis as the main indicator species of the abandoned saltworks' communities, characterized by less saline soils and being desiccated in summer. Conclusions Land-use change caused by the abandonment of salinas facilitated the transition of halophytic into psammophytic communities and the invasiveness of C. edulis. The maintenance of traditional saltworks activities is vital for the preservation of this fragile wetland ecosystem.
- Evidence for rangewide panmixia despite multiple barriers to dispersal in a marine musselPublication . Lourenço, Carla R.; Nicastro, Katy; McQuaid, Christopher D.; Chefaoui, Rosa; Assis, J.; Taleb, Mohammed Z.; Zardi, Gerardo I.Oceanographic features shape the distributional and genetic patterns of marine species by interrupting or promoting connections among populations. Although general patterns commonly arise, distributional ranges and genetic structure are species-specific and do not always comply with the expected trends. By applying a multimarker genetic approach combined with Lagrangian particle simulations (LPS) we tested the hypothesis that oceanographic features along northeastern Atlantic and Mediterranean shores influence dispersal potential and genetic structure of the intertidal mussel Perna perna. Additionally, by performing environmental niche modelling we assessed the potential and realized niche of P. perna along its entire native distributional range and the environmental factors that best explain its realized distribution. Perna perna showed evidence of panmixia across > 4,000 km despite several oceanographic breaking points detected by LPS. This is probably the result of a combination of life history traits, continuous habitat availability and stepping-stone dynamics. Moreover, the niche modelling framework depicted minimum sea surface temperatures (SST) as the major factor shaping P. perna distributional range limits along its native areas. Forthcoming warming SST is expected to further change these limits and allow the species to expand its range polewards though this may be accompanied by retreat from warmer areas.
- Accounting for uncertainty in predictions of a marine species: Integrating population genetics to verify past distributionsPublication . Chefaoui, Rosa; Serrao, EsterWe develop a new perspective on the uncertainties affecting the predictions of coastal species distributions using patterns of genetic diversity to assess the congruence of hindcasted distribution models. We model the niche of the subtidal seagrass Cymodocea nodosa, for which previous phylogeographic findings are used to contrast hypotheses for the Last Glacial Maximum (LGM) in the Mediterranean and adjacent Atlantic coastal regions. We focus on amelioration of sampling bias, and explore the influence of other sources of uncertainty such as the number of variables, Ocean General Circulation Models (OGCMs), and thresholds used. To do that, we test geographical and environmental filtering of presences, and a species-specific weighted filter related to political boundaries for background data. Contrary to our initial hypothesis that reducing sampling bias by means of geographical, environmental or background filtering would enhance predictive power and reliability of the models, none of these approaches consistently improved performance. These counter-intuitive results might be explained by the higher relative occurrence area (ROA) inherent to linear coastal study areas in relation to terrestrial regions, which may cause worse predictions and, thus, higher variability among models. We found that the Ocean General Circulation Models (OGCMs), the threshold and, to a smaller extent, the number of variables used, conditioned greatly the variability of the predictions in both accuracy and geographic range. Despite these uncertainties, all models achieved the goal of identifying long-term persistence regions (glacial refugia) where the highest genetic diversity for Cymodocea nodosa is found nowadays. However, only the CCSM corroborated the hypothesis, raised in previous studies, of a vicariant process in shaping the species' genetic structure. (C) 2017 Elsevier B.V. All rights reserved.
- Environmental niche divergence among three dune shrub sister species with parapatric distributionsPublication . Chozas, Sergio; Chefaoui, Rosa; Correia, Otilia; Bonal, Raul; Hortal, JoaquínBackground and Aims The geographical distributions of species are constrained by their ecological requirements. The aim of this work was to analyse the effects of environmental conditions, historical events and biogeographical constraints on the diversification of the three species of the western Mediterranean shrub genus Stauracanthus, which have a parapatric distribution in the Iberian Peninsula. Methods Ecological niche factor analysis and generalized linear models were used to measure the response of all Stauracanthus species to the environmental gradients and map their potential distributions in the Iberian Peninsula. The bioclimatic niche overlap between the three species was determined by using Schoener's index. The genetic differentiation of the Iberian and northern African populations of Stauracanthus species was characterized with GenalEx. The effects on genetic distances of the most important environmental drivers were assessed through Mantel tests and non-metric multidimensional scaling. Key Results The three Stauracanthus species show remarkably similar responses to climatic conditions. This supports the idea that all members of this recently diversified clade retain common adaptations to climate and consequently high levels of climatic niche overlap. This contrasts with the diverse edaphic requirements of Stauracanthus species. The populations of the S. genistoides-spectabilis clade grow on Miocene and Pliocene fine-textured sedimentary soils, whereas S. boivinii, the more genetically distant species, occurs on older and more coarse-textured sedimentary substrates. These patterns of diversification are largely consistent with a stochastic process of geographical range expansion and fragmentation coupled with niche evolution in the context of spatially complex environmental fluctuations. Conclusions: The combined analysis of the distribution, realized environmental niche and phylogeographical relationships of parapatric species proposed in this work allows integration of the biogeographical, ecological and evolutionary processes driving the evolution of species adaptations and how they determine their current geographical ranges.
- Warming threatens to propel the expansion of the exotic seagrass Halophila stipulaceaPublication . Wesselmann, Marlene; Chefaoui, Rosa M.; Marbà, Núria; Serrao, Ester; Duarte, Carlos M.The spread of exotic species to new areas can be magnified when favored by future climatic conditions. Forecasting future ranges using species distribution models (SDMs) could be improved by considering physiological thresholds, because models solely based on occurrence data cannot account for plasticity due to acclimation of individuals to local conditions over their life-time or to adaptation due to selection within local populations. This is particularly relevant for the exotic seagrass Halophila stipulacea, which colonized the Mediterranean Sea a century ago and shifted its thermal niche, coping with a colder regime. Here, we used two hybrid models combining correlative SDMs with the thermal limits for growth of native and exotic H. stipulacea populations to predict the distribution of the species in its native (Indian Ocean and Red Sea) and exotic ranges (Mediterranean Sea and Caribbean Sea) under two scenarios forecasting limited (RCP 2.6) and severe (RCP 8.5) future climate changes by 2050 and 2100. Then, we assessed the differences between hybrid models based on native Red Sea thermal limits (niche conservatism: 17–36◦C) and on exotic Mediterranean thermal limits (local adaptation: 14–36◦C). At the Mediterranean exotic range, the local adaptation hybrid model accurately agreed with the present distribution of the species while the niche conservatism-based hybrid model failed to predict 87% of the current occurrences of the species. By contrast, both hybrid models predicted similar species distributions for the native range and exotic Caribbean range at present and projected that H. stipulacea will maintain its current worldwide under all future greenhouse gas emission scenarios. The hybrid model based on Mediterranean thermal limits projected the expansion of H. stipulacea through the western Mediterranean basin (except the gulf of Leon) under the most severe scenario (RCP 8.5) by 2100, increasing its distribution by 50% in the Mediterranean. The future expansion of H. stipulacea is related to its capacity to cope with warm waters and it may become a relevant species in the future, particularly under the projected decline of native Mediterranean seagrasses, resulting in important shifts in seagrass communities and overall ecosystem functions.
- Niche conservatism and spread of seaweed invasive lineages with different residence time in the Mediterranean SeaPublication . Chefaoui, Rosa; E, Varela-ÁlvarezMarine algae invasions attract a lot of interest as they are altering the structure of marine ecosystems. However, niche dynamics and risk predictions of marine invasions integrating phylogeographic structure in the analyses have not yet been investigated. In this study, we perform a comprehensive analysis of two invasive lineages of Caulerpa taxifolia with different residence time in the Mediterranean Sea for a better understanding of their invasive processes. We performed lineage-based and species-based niche models to assess the risk of invasion, the spatial overlap, and the variables delimiting the distribution of the two lineages. We also compared the effect of using different extents on niche overlap and niche shift analyses. Intraspecific models with pooled occurrences accurately found two separate regions susceptible of invasion for each invasive lineage in the Mediterranean, while species-based predictions underestimated invaded regions. The invasive lineages spread across colder coastal areas than the species. Altogether, we provide evidence that different invasive lineages of algae show dissimilar environmental responses and invasive ranges that are not detectable by species-based analyses. Moreover, niche overlap and niche shift analyses seem to depend greatly on the geographical extent used. According to the most appropriate extent (worldwide), the invaded range did not show niche shift, and thus, no evidence of a post-introduction adaptation scenario was found as both lineages invaded habitats similar to their Australian native locations. Actions to prevent further spreading of the most recent invasive lineage are needed.
- Environmental drivers of distribution and reef development of the Mediterranean coral Cladocora caespitosaPublication . Chefaoui, Rosa; Casado-Amezua, Pilar; Templado, JoseCladocora caespitosa is the only Mediterranean scleractinian similar to tropical reef-building corals. While this species is part of the recent fossil history of the Mediterranean Sea, it is currently considered endangered due to its decline during the last decades. Environmental factors affecting the distribution and persistence of extensive bank reefs of this endemic species across its whole geographic range are poorly understood. In this study, we examined the environmental response of C. caespitosa and its main types of assemblages using ecological niche modeling and ordination analysis. We also predicted other suitable areas for the occurrence of the species and assessed the conservation effectiveness of Mediterranean marine protected areas (MPAs) for this coral. We found that phosphate concentration and wave height were factors affecting both the occurrence of this versatile species and the distribution of its extensive bioconstructions in the Mediterranean Sea. A set of factors (diffuse attenuation coefficient, calcite and nitrate concentrations, mean wave height, sea surface temperature, and shape of the coast) likely act as environmental barriers preventing the species from expansion to the Atlantic Ocean and the Black Sea. Uncertainties in our large-scale statistical results and departures from previous physiological and ecological studies are also discussed under an integrative perspective. This study reveals that Mediterranean MPAs encompass eight of the ten banks and 16 of the 21 beds of C. caespitosa. Preservation of water clarity by avoiding phosphate discharges may improve the protection of this emblematic species.
- Palaeoclimatic conditions in the Mediterranean explain genetic diversity of Posidonia oceanica seagrass meadowsPublication . Chefaoui, Rosa; Duarte, Carlos M.; Serrao, Ester A.Past environmental conditions in the Mediterranean Sea have been proposed as main drivers of the current patterns of distribution of genetic structure of the seagrass Posidonia oceanica, the foundation species of one of the most important ecosystems in the Mediterranean Sea. Yet, the location of cold climate refugia (persistence regions) for this species during the Last Glacial Maximum (LGM) is not clear, precluding the understanding of its biogeographical history. We used Ecological Niche Modelling together with existing phylogeographic data to locate Pleistocene refugia in the Mediterranean Sea and to develop a hypothetical past biogeographical distribution able to explain the genetic diversity presently found in P. oceanica meadows. To do that, we used an ensemble approach of six predictive algorithms and two Ocean General Circulation Models. The minimum SST in winter and the maximum SST in summer allowed us to hindcast the species range during the LGM. We found separate glacial refugia in each Mediterranean basin and in the Central region. Altogether, the results suggest that the Central region of the Mediterranean Sea was the most relevant cold climate refugium, supporting the hypothesis that long-term persistence there allowed the region to develop and retain its presently high proportion of the global genetic diversity of P. oceanica.
