Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Exogenous WNT5A and WNT11 proteins rescue CITED2 dysfunction in mouse embryonic stem cells and zebrafish morphantsPublication . Santos, João; Mendes-Silva, Leonardo; Afonso,Vanessa; Martins, Gil; Machado, Rui; Lopes, Joao; Cancela, M. Leonor; Futschik, Matthias; Sachinidis, Agapios; Gavaia, Paulo; Bragança, JoséMutations and inadequate methylation profiles of CITED2 are associated with human congenital heart disease (CHD). In mouse, Cited2 is necessary for embryogenesis, particularly for heart development, and its depletion in embryonic stem cells (ESC) impairs cardiac differentiation. We have now determined that Cited2 depletion in ESC affects the expression of transcription factors and cardiopoietic genes involved in early mesoderm and cardiac specification. Interestingly, the supplementation of the secretome prepared from ESC overexpressing CITED2, during the onset of differentiation, rescued the cardiogenic defects of Cited2-depleted ESC. In addition, we demonstrate that the proteins WNT5A and WNT11 held the potential for rescue. We also validated the zebrafish as a model to investigate cited2 function during development. Indeed, the microinjection of morpholinos targeting cited2 transcripts caused developmental defects recapitulating those of mice knockout models, including the increased propensity for cardiac defects and severe death rate. Importantly, the co-injection of anti-cited2 morpholinos with either CITED2 or WNT5A and WNT11 recombinant proteins corrected the developmental defects of Cited2-morphants. This study argues that defects caused by the dysfunction of Cited2 at early stages of development, including heart anomalies, may be remediable by supplementation of exogenous molecules, offering the opportunity to develop novel therapeutic strategies aiming to prevent CHD.
- Analysis of sperm quality in a type I diabetes zebrafish modelPublication . Diogo, Patricia; Eufrásio, Ana; Martins, Gil; Cardeira, João; Cancela, M. Leonor; Cabrita, Elsa; Gavaia, PauloDiabetes is a fast growing disease in human populaon and the study of its impact on mammalian reproducve traits has been con-troversial. Some authors showed a negave eect on sperm mol-ity and DNA fragmentaon in some species, while others failed to detect any eects. In the present study zebrash was used as a model to study the eect of diabetes in sperm traits such as mol-ity, viability and DNA fragmentaon
- Anti-osteogenic activity of cadmium in zebrafishPublication . Tarasco, Marco; Cardeira Da Silva, João; Viegas, Michael; Caria, Joana; Martins, Gil; Gavaia, Paulo; Cancela, M. Leonor; Laizé, VincentAmong the many anthropogenic chemicals that end up in the aquatic ecosystem, heavy metals, in particular cadmium, are hazardous compounds that have been shown to affect developmental, reproductive, hepatic, hematological, and immunological functions in teleost fish. There is also evidence that cadmium disturbs bone formation and skeletal development, but data is scarce. In this work, zebrafish was used to further characterize the anti-osteogenic/osteotoxic effects of cadmium and gain insights into underlying mechanisms. Upon exposure to cadmium, a reduction of the opercular bone growth was observed in 6-days post-fertilization (dpf) larvae and an increase in the incidence of skeletal deformities was evidenced in 20-dpf post-larvae. The extent and stiffness of newly formed bone was also affected in adult zebrafish exposed to cadmium while regenerating their caudal fin. A pathway reporter assay revealed a possible role of the MTF-1 and cAMP/PKA signaling pathways in mechanisms of cadmium osteotoxicity, while the expression of genes involved in osteoblast differentiation and matrix production was strongly reduced in cadmium-exposed post-larvae. This work not only confirmed cadmium anti-osteogenic activity and identified targeted pathways and genes, but it also suggested that cadmium may affect biomechanical properties of bone.