Repository logo
 
Loading...
Profile Picture
Person

Hernández-Prieto, Miguel Angel

Search Results

Now showing 1 - 6 of 6
  • The transcriptional landscape of the photosynthetic model cyanobacterium synechocystis sp PCC6803
    Publication . Hernandez-Prieto, Miguel A.; Semeniuk, Trudi Ann; Joaquín, Giner-Lamia; Futschik, Matthias E.
    Cyanobacteria exhibit a great capacity to adapt to different environmental conditions through changes in gene expression. Although this plasticity has been extensively studied in the model cyanobacterium Synechocystis sp. PCC 6803, a detailed analysis of the coordinated transcriptional adaption across varying conditions is lacking. Here, we report a meta-analysis of 756 individual microarray measurements conducted in 37 independent studies-the most comprehensive study of the Synechocystis transcriptome to date. Using stringent statistical evaluation, we characterized the coordinated adaptation of Synechocystis' gene expression on systems level. Evaluation of the data revealed that the photosynthetic apparatus is subjected to greater changes in expression than other cellular components. Nevertheless, network analyses indicated a significant degree of transcriptional coordination of photosynthesis and various metabolic processes, and revealed the tight co-regulation of components of photosystems I, II and phycobilisomes. Detailed inspection of the integrated data led to the discovery a variety of regulatory patterns and novel putative photosynthetic genes. Intriguingly, global clustering analyses suggested contrasting transcriptional response of metabolic and regulatory genes stress to conditions. The integrated Synechocystis transcriptome can be accessed and interactively analyzed via the CyanoEXpress website (http://cyanoexpress.sysbiolab.eu).
  • Iron deprivation in synechocystis: inference of pathways, non-coding RNAs, and regulatory elements from comprehensive expression profiling
    Publication . Hernandez-Prieto, Miguel A.; Schoen, Verena; Georg, Jens; Barreira, Luísa; J. C. or Varela J. or Varela J.C.S., Varela; Hess, Wolfgang R.; Futschik, Matthias E.
    Iron is an essential cofactor in many metabolic reactions. Mechanisms controlling iron homeostasis need to respond rapidly to changes in extracellular conditions, but they must also keep the concentration of intracellular iron under strict control to avoid the generation of damaging reactive oxygen species. Due to its role as a redox carrier in photosynthesis, the iron quota in cyanobacteria is about 10 times higher than in model enterobacteria. The molecular details of how such a high quota is regulated are obscure. Here we present experiments that shed light on the iron regulatory system in cyanobacteria. We measured time-resolved changes in gene expression after iron depletion in the cyanobacterium Synechocystis sp. PCC 6803 using a comprehensive microarray platform, monitoring both protein-coding and non-coding transcripts. In total, less than a fifth of all protein-coding genes were differentially expressed during the first 72 hr. Many of these proteins are associated with iron transport, photosynthesis, or ATP synthesis. Comparing our data with three previous studies, we identified a core set of 28 genes involved in iron stress response. Among them were genes important for assimilation of inorganic carbon, suggesting a link between the carbon and iron regulatory networks. Nine of the 28 genes have unknown functions and constitute key targets for further functional analysis. Statistical and clustering analyses identified 10 small RNAs, 62 antisense RNAs, four 59UTRs, and seven intragenic elements as potential novel components of the iron regulatory network in Synechocystis. Hence, our genome-wide expression profiling indicates an unprecedented complexity in the iron regulatory network of cyanobacteria.
  • UniHI 7: an enhanced database for retrieval and interactive analysis of human molecular interaction networks
    Publication . Kalathur, Ravi Kiran Reddy; Pinto, Jose Pedro; Hernandez-Prieto, Miguel A.; Machado, Rui; Almeida, Dulce; Chaurasia, Gautam; Futschik, Matthias E.
    Unified Human Interactome (UniHI) (http://www.unihi.org) is a database for retrieval, analysis and visualization of human molecular interaction networks. Its primary aim is to provide a comprehensive and easy-to-use platform for network-based investigations to a wide community of researchers in biology and medicine. Here, we describe a major update (version 7) of the database previously featured in NAR Database Issue. UniHI 7 currently includes almost 350 000 molecular interactions between genes, proteins and drugs, as well as numerous other types of data such as gene expression and functional annotation. Multiple options for interactive filtering and highlighting of proteins can be employed to obtain more reliable and specific network structures. Expression and other genomic data can be uploaded by the user to examine local network structures. Additional built-in tools enable ready identification of known drug targets, as well as of biological processes, phenotypes and pathways enriched with network proteins. A distinctive feature of UniHI 7 is its user-friendly interface designed to be utilized in an intuitive manner, enabling researchers less acquainted with network analysis to perform state-of-the-art network-based investigations.
  • Transcriptome dynamics of a broad host-range cyanophage and its hosts
    Publication . Doron, Shany; Fedida, Ayalla; Hernandez-Prieto, Miguel A.; Sabehi, Gazalah; Karunker, Iris; Stazic, Damir; Feingersch, Roi; Steglich, Claudia; Futschik, Matthias; Lindell, Debbie; Sorek, Rotem
    Cyanobacteria are highly abundant in the oceans and are constantly exposed to lytic viruses. The T4-like cyanomyoviruses are abundant in the marine environment and have broad host-ranges relative to other cyanophages. It is currently unknown whether broad host-range phages specifically tailor their infection program for each host, or employ the same program irrespective of the host infected. Also unknown is how different hosts respond to infection by the same phage. Here we used microarray and RNA-seq analyses to investigate the interaction between the Syn9 T4-like cyanophage and three phylogenetically, ecologically and genomically distinct marine Synechococcus strains: WH7803, WH8102 and WH8109. Strikingly, Syn9 led a nearly identical infection and transcriptional program in all three hosts. Different to previous assumptions for T4-like cyanophages, three temporally regulated gene expression classes were observed. Furthermore, a novel regulatory element controlled early-gene transcription, and host-like promoters drove middle gene transcription, different to the regulatory paradigm for T4. Similar results were found for the P-TIM40 phage during infection of Prochlorococcus NATL2A. Moreover, genomic and metagenomic analyses indicate that these regulatory elements are abundant and conserved among T4-like cyanophages. In contrast to the near-identical transcriptional program employed by Syn9, host responses to infection involved host-specific genes primarily located in hypervariable genomic islands, substantiating islands as a major axis of phage-cyanobacteria interactions. Our findings suggest that the ability of broad host-range phages to infect multiple hosts is more likely dependent on the effectiveness of host defense strategies than on differential tailoring of the infection process by the phage.
  • Toward a systems-level understanding of gene regulatory, protein interaction, and metabolic networks in cyanobacteria
    Publication . Hernandez-Prieto, Miguel A.; Semeniuk, Trudi A.; Futschik, Matthias E.
    Cyanobacteria are essential primary producers in marine ecosystems, playing an important role in both carbon and nitrogen cycles. In the last decade, various genome sequencing and metagenomic projects have generated large amounts of genetic data for cyanobacteria. This wealth of data provides researchers with a new basis for the study of molecular adaptation, ecology and evolution of cyanobacteria, as well as for developing biotechnological applications. It also facilitates the use of multiplex techniques, i.e., expression profiling by high-throughput technologies such as microarrays, RNA-seq, and proteomics. However, exploration and analysis of these data is challenging, and often requires advanced computational methods. Also, they need to be integrated into our existing framework of knowledge to use them to draw reliable biological conclusions. Here, systems biology provides important tools. Especially, the construction and analysis of molecular networks has emerged as a powerful systems-level framework, with which to integrate such data, and to better understand biological relevant processes in these organisms. In this review, we provide an overview of the advances and experimental approaches undertaken using multiplex data from genomic, transcriptomic, proteomic, and metabolomic studies in cyanobacteria. Furthermore, we summarize currently available web-based tools dedicated to cyanobacteria, i.e., CyanoBase, CyanoEXpress, ProPortal, Cyanorak, CyanoBIKE, and CINPER. Finally, we present a case study for the freshwater model cyanobacteria, Synechocystis sp. PCC6803, to show the power of meta-analysis, and the potential to extrapolate acquired knowledge to the ecologically important marine cyanobacteria genus, Prochlorococcus.
  • Identification of the direct regulon of NtcA during early acclimation to nitrogen starvation in the cyanobacterium &ITSynechocystis&IT sp PCC 6803
    Publication . Giner-Lamia, Joaquin; Robles-Rengel, Rocio; Hernandez-Prieto, Miguel A.; Isabel Muro-Pastor, M.; Florencio, Francisco J.; Futschik, Matthias E.
    In cyanobacteria, nitrogen homeostasis is maintained by an intricate regulatory network around transcription factor NtcA. Although mechanisms controlling NtcA activity appear to be well understood, its regulon remains poorly defined. To determine the NtcA regulon during the early stages of nitrogen starvation for the model cyanobacterium Synechocystis sp. PCC 6803, we performed chromatin immunoprecipitation, followed by sequencing (ChIP-seq), in parallel with transcriptome analysis (RNA-seq). Through combining these methods, we determined 51 genes activated and 28 repressed directly by NtcA. In addition to genes associated with nitrogen and carbon metabolism, a considerable number of genes without current functional annotation were among direct targets providing a rich reservoir for further studies. The NtcA regulon also included eight non-coding RNAs, of which Ncr1071, Syr6 and NsiR7 were experimentally validated, and their putative targets were computationally predicted. Surprisingly, we found substantial NtcA binding associated with delayed expression changes indicating that NtcA can reside in a poised state controlled by other factors. Indeed, a role of PipX as modulating factor in nitrogen regulation was confirmed for selected NtcA-targets. We suggest that the indicated poised state of NtcA enables a more differentiated response to nitrogen limitation and can be advantageous in native habitats of Synechocystis.