Repository logo
 
Loading...
Profile Picture
Person

Rodrigues, Daniela

Search Results

Now showing 1 - 2 of 2
  • Estimation of soluble solids content and fruit temperature in 'rocha' pear using Vis-NIR spectroscopy and the spectraNet–32 deep learning architecture
    Publication . Martins, J. A; Rodrigues, Daniela; Cavaco, A. M.; Antunes, Maria Dulce; Guerra, Rui Manuel Farinha das Neves
    Spectra-based methods are becoming increasingly important in Precision Agriculture as they offer non-destructive, quick tools for measuring the quality of produce. This study introduces a novel approach for esti-mating the soluble solids content (SSC) of 'Rocha' pears using the SpectraNet-32 deep learning architecture, which operates on 1D fruit spectra in the visible to near-infrared region (Vis-NIRS). This method was also able to estimate fruit temperatures, which improved the SSC prediction performance. The dataset consisted of 3300 spectra from 1650 'Rocha' pears collected from local markets over several weeks during the 2010 and 2011 seasons, which had varying edaphoclimatic conditions. Two types of partial least squares (PLS) feature selection methods, under various configurations, were applied to the input spectra to identify the most significant wavelengths for training SpectraNet-32. The model's robustness was also compared to a similar state-of-the-art deep learning architecture, DeepSpectra, as well as four other classical machine learning algorithms: PLS, multiple linear regression (MLR), support vector machine (SVM), and multi-layer perceptron (MLP). In total, 23 different experimental method configurations were assessed, with 150 neural networks each. SpectraNet-32 consistently outperformed other methods in several metrics. On average, it was 6.1% better than PLS in terms of the root mean square error of prediction (RMSEP, 1.08 vs. 1.15%), 7.7% better in prediction gain (PG, 1.67 vs. 1.55), 3.6% better in the coefficient of determination (R2, 0.58 vs. 0.56) and 5.8% better in the coefficient of variation (CV%, 8.35 vs. 8.86).
  • Feature discovery in NIR spectroscopy based Rocha pear classification
    Publication . Daniel, Mariana; Guerra, Rui Manuel Farinha das Neves; Brazio, António; Rodrigues, Daniela; M. Cavaco, A.; Antunes, Maria Dulce; Valente de Oliveira, JOSÉ
    Non-invasive techniques for automatic fruit classification are gaining importance in the global agro-industry as they allow for optimizing harvesting, storage, management, and distribution decisions. Visible, near infra-red (NIR) diffuse reflectance spectroscopy is one of the most employed techniques in such fruit classification. Typically, after the acquisition of a fruit reflectance spectrum the wavelength domain signal is preprocessed and a classifier is designed. Up to now, little or no work considered the problem of feature generation and selection of the reflectance spectrum. This work aims at filling this gap, by exploiting a feature engineering phase before the classifier. The usual approach where the classifier is fed directly with the reflectances measured at each wavelength is contrasted with the proposed division of the spectra into bands and their characterization in wavelength, frequency, and wavelength-frequency domains. Feature selection is also applied for optimizing efficiency, predictive accuracy, and for mitigating over-training. A total of 3050 Rocha pear samples from different origins and harvest years are considered. Statistical tests of hypotheses on classification results of soluble solids content - a predictor of both fruit sweetness and ripeness - show that the proposed preliminary phase of feature engineering outperforms the usual direct approach both in terms of accuracy and in the number of necessary features. Moreover, the method allows for the identification of features that are physical chemistry meaningful.