Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Nitrogen uptake kinetics of an enteric methane inhibitor, the red seaweed Asparagopsis armata
    Publication . Torres, Raquel; Mata, Leonardo; Santos, Rui; Alexandre, Ana
    The use of red seaweeds of the genus Asparagopsis as a feed ingredient drastically decreases the enteric methane production by ruminant livestock, thereby reducing the environmental impact of this industry. To address the world demand for Asparagopsis mass production, it is essential to understand the species nutrition. In this study, we evaluated for the first time the uptake kinetics of inorganic and organic nitrogen forms of the tetrasporophyte of Asparagopsis armata, to identify the different uptake phases (surge and internally controlled) and to reveal the species preferential nitrogen sources. The time course of nitrogen uptake rates was followed, and the preferential nitrogen sources were assessed in choice-uptake experiments through the incorporation of (15) N-labelled ammonium, nitrate and amino acids. As expected, the short-term, surge uptake rates were much higher than the stabilized internally controlled uptake rates. Ammonium was the preferred form during the internally controlled phase but surprisingly, the surge uptake rates of amino acids were much higher than those of inorganic forms. The importance of amino acids for A. armata nutrition was further supported by its internally controlled uptake rates that where higher than those of nitrate. Ammonium is, thus, the main nitrogen form for the species nutrition, but pulses of organic nitrogen may be considered in the mass production of Asparagopsis for the enteric methane inhibition of the livestock industry.
  • Competition for nitrogen between the seaweed Caulerpa prolifera and the seagrass Cymodocea nodosa
    Publication . Alexandre, Ana; Santos, Rui
    The rhizophytic seaweed Caulerpa prolifera has been expanding rapidly in the Ria Formosa lagoon, southern Portugal, taking over deeper unvegetated areas and mixing with the native seagrass Cymodocea nodosa in shallower areas. In the Ria Formosa lagoon, belowground ammonium uptake from the sediment represents the main source of nitrogen for the 2 macrophytes, except during the ammonium pulses from the sediment to the water column that are incorporated through aboveground plant parts. We examined the competition for inorganic and organic nitrogen between C. prolifera and C. nodosa through a series of N-15-ammonium and N-15-amino acid surge uptake experiments combining single-species and mixed incubations at a range of nutrient concentrations. Our results showed that C. prolifera is generally faster than C. nodosa in the acquisition of ammonium and amino acids by both above- and belowground parts, and that the uptake rates of ammonium and amino acids of one species were not affected by the presence of the other species. The exception was the amino acid uptake through the rhizoids of C. prolifera, which was slightly enhanced in the presence of C. nodosa. In this situation, the aboveground ammonium uptake becomes the main contributor to the nitrogen budget of C. nodosa but not to that of C. prolifera. When ammonium pulses are considered, C. nodosa is more competitive for nitrogen than C. prolifera. In this case, the leaf uptake of ammonium is the largest contributor to the total nitrogen (ammonium plus amino acids) budget of the seagrass. Our results showed that the different nutritional strategies of the 2 macrophytes allow their coexistence in the Ria Formosa lagoon.