Repository logo
 
Loading...
Profile Picture
Person

Farrajota, Miguel

Search Results

Now showing 1 - 4 of 4
  • The SmartVision navigation prototype for the blind
    Publication . du Buf, J. M. H.; Rodrigues, J. M. F.; Paredes, Hugo; Barroso, João; Farrajota, Miguel; José, João; Teixeira, Victor; Saleiro, Mário
    The goal of the project "SmartVision: active vision for the blind" is to develop a small and portable but intelligent and reliable system for assisting the blind and visually impaired while navigating autonomously, both outdoor and indoor. In this paper we present an overview of the prototype, design issues, and its different modules which integrate a GIS with GPS, Wi-Fi, RFID tags and computer vision. The prototype addresses global navigation by following known landmarks, local navigation with path tracking and obstacle avoidance, and object recognition. The system does not replace the white cane, but extends it beyond its reach. The user-friendly interface consists of a 4-button hand-held box, a vibration actuator in the handle of the cane, and speech synthesis. A future version may also employ active RFID tags for marking navigation landmarks, and speech recognition may complement speech synthesis.
  • The SmartVision Navigation Prototype for Blind Users
    Publication . du Buf, J. M. H.; Barroso, João; Rodrigues, J. M. F.; Paredes, Hugo; Farrajota, Miguel; Fernandes, Hugo; José, João; Teixeira, Victor; Saleiro, Mário
    The goal of the Portuguese project "SmartVision: active vision for the blind" is to develop a small, portable and cheap yet intelligent and reliable system for assisting the blind and visually impaired while navigating autonomously, both in- and outdoor. In this article we present an overview of the prototype, design issues, and its different modules which integrate GPS and Wi-Fi localisation with a GIS, passive RFID tags, and computer vision. The prototype addresses global navigation for going to some destiny, by following known landmarks stored in the GIS in combination with path optimisation, and local navigation with path and obstacle detection just beyond the reach of the white cane. The system does not replace the white cane but complements it, in order to alert the user to looming hazards. In addition, computer vision is used to identify objects on shelves, for example in a pantry or refrigerator. The user-friendly interface consists of a four-button hand-held box, a vibration actuator in the handle of the white cane, and speech synthesis. In the near future, passive RFID tags will be complemented by active tags for marking navigation landmarks, and speech recognition may complement or substitute the vibration actuator.
  • The SmartVision local navigation aid for blind and visually impaired persons
    Publication . José, João; Farrajota, Miguel; Rodrigues, J. M. F.; du Buf, J. M. H.
    The SmartVision prototype is a small, cheap and easily wearable navigation aid for blind and visually impaired persons. Its functionality addresses global navigation for guiding the user to some destiny, and local navigation for negotiating paths, sidewalks and corridors, with avoidance of static as well as moving obstacles. Local navigation applies to both in- and outdoor situations. In this article we focus on local navigation: the detection of path borders and obstacles in front of the user and just beyond the reach of the white cane, such that the user can be assisted in centering on the path and alerted to looming hazards. Using a stereo camera worn at chest height, a portable computer in a shoulder-strapped pouch or pocket and only one earphone or small speaker, the system is inconspicuous, it is no hindrence while walking with the cane, and it does not block normal surround sounds. The vision algorithms are optimised such that the system can work at a few frames per second.
  • A vision system for detecting paths and moving obstacles for the blind
    Publication . José, João; Farrajota, Miguel; Rodrigues, J. M. F.; du Buf, J. M. H.
    In this paper we present a monocular vision system for a navigation aid. The system assists blind persons in following paths and sidewalks, and it alerts the user to moving obstacles which may be on collision course. Path borders and the vanishing point are de-tected by edges and an adapted Hough transform. Opti-cal flow is detected by using a hierarchical, multi-scale tree structure with annotated keypoints. The tree struc-ture also allows to segregate moving objects, indicating where on the path the objects are. Moreover, the centre of the object relative to the vanishing point indicates whether an object is approaching or not.