Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Testing lorentz and CPT invariance with ultracold neutrons
    Publication . Martin-Ruiz, A.; Escobar, Carlos
    In this paper we investigate, within the standard model extension framework, the influence of Lorentz- and CPT-violating terms on gravitational quantum states of ultracold neutrons. Using a semiclassical wave packet, we derive the effective nonrelativistic Hamiltonian which describes the neutrons vertical motion by averaging the contributions from the perpendicular coordinates to the free falling axis. We compute the physical implications of the Lorentz- and CPT-violating terms on the spectra. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the symmetries-violation c(mu nu)(n) coefficients. We find that ultracold neutrons are sensitive to the a(i)(n) and e(i)(n) coefficients, which thus far are unbounded by experiments in the neutron sector. We propose two additional problems involving ultracold neutrons which could be relevant for improving our current bounds; namely, gravity-resonance spectroscopy and neutron whispering gallery wave.
  • Extended Nambu models: Their relation to gauge theories
    Publication . Escobar, Carlos; Urrutia, L. F.
    Yang-Mills theories supplemented by an additional coordinate constraint, which is solved and substituted in the original Lagrangian, provide examples of the so-called Nambu models, in the case where such constraints arise from spontaneous Lorentz symmetry breaking. Some explicit calculations have shown that, after additional conditions are imposed, Nambu models are capable of reproducing the original gauge theories, thus making Lorentz violation unobservable and allowing the interpretation of the corresponding massless gauge bosons as the Goldstone bosons arising from the spontaneous symmetry breaking. A natural question posed by this approach in the realm of gauge theories is to determine under which conditions the recovery of an arbitrary gauge theory from the corresponding Nambu model, defined by a general constraint over the coordinates, becomes possible. We refer to these theories as extended Nambu models (ENM) and emphasize the fact that the defining coordinate constraint is not treated as a standard gauge fixing term. At this level, the mechanism for generating the constraint is irrelevant and the case of spontaneous Lorentz symmetry breaking is taken only as a motivation, which naturally bring this problem under consideration. Using a nonperturbative Hamiltonian analysis we prove that the ENM yields the original gauge theory after we demand current conservation for all time, together with the imposition of the Gauss laws constraints as initial conditions upon the dynamics of the ENM. The Nambu models yielding electrodynamics, Yang-Mills theories and linearized gravity are particular examples of our general approach.
  • Equivalence between bumblebee models and electrodynamics in a nonlinear gauge
    Publication . Escobar, Carlos; Martin-Ruiz, A.
    Bumblebee models are effective field theories describing a vector field with a nonzero vacuum expectation value that spontaneously breaks Lorentz invariance. They provide an alternative way of exploring the similarities between theories with spontaneous Lorentz symmetry breaking and gauge theories. The equivalence between bumblebee models with suitable conditions and standard electrodynamics in a nonlinear gauge A mu A mu + b(2) = 0 is taken for granted; however, this point is very subtle and has not yet been fully addressed. The main goal of this paper is to fill in this gap. More precisely, here we study the relation between a bumblebee model, with a smooth potential of the form V(B-mu) = V(B mu B mu + h(2),) and standard electrodynamics in the nonlinear gauge A mu A mu + b(2) = 0, both at the classical and quantum levels. Using Dirac's method we show that after introducing Dirac brackets with suitable initial conditions, the classical dynamics of the bumblebee model corresponds to that of standard electrodynamics in the aforementioned nonlinear gauge. In the quantum case we demonstrate that perturbative calculations of Feynman amplitudes to any physical process in each model are indistinguishable. To do this, we show that the Feynman rules and propagators of standard electrodynamics in the nonlinear gauge and those describing the bumblebee model are the same.
  • Local effects of the quantum vacuum in Lorentz-violating electrodynamics
    Publication . Martin-Ruiz, A.; Escobar, Carlos
    The Casimir effect is one of the most remarkable consequences of the nonzero vacuum energy predicted by quantum field theory. In this paper we use a local approach to study the Lorentz violation effects of the minimal standard model extension on the Casimir force between two parallel conducting plates in the vacuum. Using a perturbative method similar to that used for obtaining the Born series for the scattering amplitudes in quantum mechanics, we compute, at leading order in the Lorentz-violating coefficients, the relevant Green's function which satisfies given boundary conditions. The standard point-splitting technique allow us to express the vacuum expectation value of the stress-energy tensor in terms of the Green's function. We discuss its structure in the region between the plates. We compute the renormalized vacuum stress, which is obtained as the difference between the vacuum stress in the presence of the plates and that of the vacuum. The Casimir force is evaluated in an analytical fashion by two methods: by differentiating the renormalized global energy density and by computing the normal-normal component of the renormalized vacuum stress. We compute the local Casimir energy, which is found to diverge as approaching the plates, and we demonstrate that it does not contribute to the observable force.