Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Changes in physical and chemical parameters of the traditional portuguese product água-mel during the production processPublication . Figueira, A.C.; Cavaco, TeresaChanges in physical and chemical parameters (viscosity, total soluble solids and Hunter color parameters L*, a*, b*, chroma and hue angle) of água-mel were investigated throughout processing. Kinetic parameters for color change of heatprocessed água-mel were monitored. A zero-order kinetic model was applied to changes in L* and b*, while a* and C* were described using a first-order kinetic model. The heating process changed all three color parameters (L*, a*, b*), causing a shift toward the darker colors. Parameters L* decreased, while a*, b*, C* and hue angle (°h) increased during heating. Regarding changes in total soluble solids and in apparent viscosity, both fitted first-order kinetics. A direct relationship was found between the changes in these two parameters. The increase in both total soluble solids and viscosity affected a*, b* and C*. In addition, a flow diagram for the Portuguese água-mel production process has been established.
- Evolution of physicochemical parameters during the thermal-based production of água-mel, a traditional Portuguese honey-related food productPublication . Cavaco, Teresa; Figueira, Ana Cristina; González-Domínguez, Raúl; Sayago, Ana; Fernández-Recamales, ÁngelesThe purpose of this work was to investigate the physicochemical changes occurring during the thermal-based production of água-mel, a traditional Portuguese honey-related food product. The refractive index, color parameters (hue angle, H°; chroma, C*), and the content of total reducing sugars, glucose, fructose, total brown pigments, and 5-hydroxymethylfurfural were monitored along the entire production process, and their evolution was kinetically modelled. Thermal processing caused a gradual decrease in sugars, which was accompanied by the formation of brown pigments and 5-hydroxymethylfurfural, increased concentration of soluble solids as evaluated through refractive index measurements, as well as the appearance of darker colors. In particular, a zero-order kinetic model could explain the changes in H° and reducing sugars, while the evolution of refractive index, brown pigments, 5-hydroxymethylfurfural, C*, fructose, and glucose were best fitted using a first-order kinetics model.