Loading...
3 results
Search Results
Now showing 1 - 3 of 3
- Effect of essential oils on the release of TNF-α and CCL2 by LPS-Stimulated THP‑1 CellsPublication . Miguel, Maria Graca; Silva, Carina Isabel da; Farah, Luana; Castro Braga, Fernão; Figueiredo, Ana CristinaPlants and their constituents have been used to treat diverse ailments since time immemorial. Many plants are used in diverse external and internal formulations (infusions, alcoholic extracts, essential oils (EOs), etc.) in the treatment of inflammation-associated diseases, such as those affecting the respiratory tract or causing gastrointestinal or joint problems, among others. To support the traditional uses of plant extracts, EOs have been assessed for their alleged anti-inflammatory properties. However, the effect of EOs on the release of cytokines and chemokines has been much less reported. Considering their traditional use and commercial relevance in Portugal and Angola, this study evaluated the effect of EOs on the in vitro inhibition of the cytokine tumor necrosis factor-α (TNF-α) and the chemokine (C-C motif) ligand 2 (CCL2) by lipopolysaccharide (LPS)-stimulated human acute monocytic leukemia cells (THP-1 cells). Twenty EOs extracted from eighteen species from seven families, namely from Amaranthaceae (Dysphania ambrosioides), Apiaceae (Foeniculum vulgare), Asteraceae (Brachylaena huillensis, Solidago virgaurea), Euphorbiaceae (Spirostachys africana), Lamiaceae (Lavandula luisieri, Mentha cervina, Origanum majorana, Satureja montana, Thymbra capitata, Thymus mastichina, Thymus vulgaris, Thymus zygis subsp. zygis), Myrtaceae (Eucalyptus globulus subsp. maidenii, Eucalyptus radiata, Eucalyptus viminalis) and Pinaceae (Pinus pinaster) were assayed for the release of CCL2 and TNF-α by LPS-stimulated THP-1 cells. B. huillensis, S. africana, S. montana, Th. mastichina and Th. vulgaris EOs showed toxicity to THP-1 cells, at the lowest concentration tested (10 μg/mL), using the tetrazolium dye assay. The most active EOs in reducing TNF-α release by LPS-stimulated THP-1 cells were those of T. capitata (51% inhibition at 20 μg/mL) and L. luisieri (15-23% inhibition at 30 μg/mL and 78-83% inhibition at 90 μg/mL). L. luisieri EO induced a concentration-dependent inhibition of CCL2 release by LPS‑stimulated THP-1 cells (23%, 54% and 82% inhibition at 10, 30 and 90 μg/mL, respectively). These EOs are potentially useful in the management of inflammatory diseases mediated by CCL2 and TNF‑α, such as atherosclerosis and arthritis.
- Volatile profile of Portuguese monofloral honeys: significance in botanical origin determinationPublication . Machado, Alexandra M.; Antunes, Marília; Miguel, Maria Graça; Vilas-Boas, Miguel; Figueiredo, Ana CristinaThe volatile profiles of 51 samples from 12 monofloral-labelled Portuguese honey types were assessed. Honeys of bell heather, carob tree, chestnut, eucalyptus, incense, lavender, orange, rape, raspberry, rosemary, sunflower and strawberry tree were collected from several regions from mainland Portugal and from the Azores Islands. When available, the corresponding flower volatiles were comparatively evaluated. Honey volatiles were isolated using two different extraction methods, solid-phase microextraction (SPME) and hydrodistillation (HD), with HD proving to be more effective in the number of volatiles extracted. Agglomerative cluster analysis of honey HD volatiles evidenced two main clusters, one of which had nine sub-clusters. Components grouped by biosynthetic pathway defined alkanes and fatty acids as dominant, namely n-nonadecane, n-heneicosane, n-tricosane and n-pentacosane and palmitic, linoleic and oleic acids. Oxygen-containing monoterpenes, such as cis- and trans-linalool oxide (furanoid), hotrienol and the apocarotenoid α-isophorone, were also present in lower amounts. Aromatic amino acid derivatives were also identified, namely benzene acetaldehyde and 3,4,5-trimethylphenol. Fully grown classification tree analysis allowed the identification of the most relevant volatiles for discriminating the different honey types. Twelve volatile compounds were enough to fully discriminate eleven honey types (92%) according to the botanical origin.
- Molecular cloning and functional characterization of a monoterpene synthase isolated from the aromatic wild shrub Thymus albicansPublication . Filipe, Alexandra; Cardoso, João; Miguel, Maria Graca; Anjos, Liliana; Trindade, Helena; Figueiredo, Ana Cristina; Barroso, Jose; Power, Deborah; Marques, N T.The essential oil of Thymus albicans Hoffmanns. & Link, a native shrub from the Iberian Peninsula, is mainly composed of monoterpenes. In this study, a 1,8-cineole synthase was isolated from the 1,8-cineole chemotype. A partial sequence that lacked the complete plastid transit peptide but contained an extended C-terminal when compared to other related terpene synthases was generated by PCR and Rapid Amplification of cDNA Ends (RACE). The predicted mature polypeptide was 593 amino acids in length and shared 78% and 77% sequence similarity with the homologue 1,8-cineole synthase from Rosmarinus officinalis and Salvia officinalis, respectively. The putative protein possessed the characteristic conserved motifs of plant monoterpene synthases including the RRx(8)W and DDxxD motifs and phylogenetic analysis indicated that the amplified 1,8-cineole synthase bears greater sequence similarity with other 1,8-cineole synthases from Lamiaceae family relative to the terpene synthases from the genus Thymus. Functional expression of the recombinant protein in Escherichia coli revealed that in the presence of geranyl diphosphate (GPP) 1,8-cineole was the major product but that its production was too low for robust quantification. Other minor conversion products included a-pinene, beta-pinene, sabinene and beta-myrcene suggesting the isolated 1,8-cineole synthase may be a multi-product enzyme. To our knowledge, this is the first report of a functionally characterized monoterpene synthase from Thymus albicans.