Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 10 of 10
  • Hypermedia APIs for the Web of Things
    Publication . Martins, Jaime; Mazayev, Andriy; Correia, NoƩlia
    The Web of Things is a new and emerging concept that defines how the Internet of Things can be connected using common Web technologies, by standardizing device interactions on upper-layer protocols. Even for devices that can only communicate using proprietary vendor technologies, upper-layer protocols can generally provide the necessary contact points for a high degree of interoperability. One of the major development issues for this new concept is creating efficient hypermedia-enriched application programming interfaces (APIs) that can map physical Things into virtual ones, exposing their properties and functionality to others. This paper does an in-depth comparison of the following six hypermedia APIs: 1) the JSON Hypertext Application Language from IETF; 2) the Media Types for Hypertext Sensor Markup from IETF; 3) the Constrained RESTful Application Language from IETF'; 4) the Web Thing Model from Evrythng; 5) the Web of Things Specification from W3C; and 6) the Web Thing API from Mozilla.
  • GACN: Self-clustering genetic algorithm for constrained networks
    Publication . A. Martins, J.; Mazayev, Andriy; Correia, NoƩlia; Schutz, G.; Barradas, A.
    Extending the lifespan of a wireless sensor network is a complex problem that involves several factors, ranging from device hardware capacity (batteries, processing capabilities, and radio efficiency) to the chosen software stack, which is often unaccounted for by the previous approaches. This letter proposes a genetic algorithm-based clustering optimization method for constrained networks that significantly improves the previous state-of-the-art results, while accounting for the specificities of the Internet engineering task force, Constrained RESTful Environment (CoRE), standards for data transmission and specifically relying on CoRE interfaces, which fit this purpose very well.
  • Resource design in constrained networks for network lifetime increase
    Publication . Correia, NoƩlia; Mazayev, Andriy; Schutz, G.; A. Martins, J.; Barradas, A.
    As constrained "things" become increasingly integrated with the Internet and accessible for interactive communication, energy efficient ways to collect, aggregate, and share data over such constrained networks are needed. In this paper, we propose the use of constrained RESTful environments interfaces to build resource collections having a network lifetime increase in mind. More specifically, based on existing atomic resources, collections are created/designed to become available as new resources, which can be observed. Such resource design should not only match client's interests, but also increase network lifetime as much as possible. For this to happen, energy consumption should be balanced/fair among nodes so that node depletion is delayed. When compared with previous approaches, results show that energy efficiency and network lifetime can be increased while reducing control/registration messages, which are used to set up or change observations.
  • Deep PC-MAC: a deep reinforcement learning pointer-critic media access protocol
    Publication . Al-Tam, Faroq; Mazayev, Andriy; Correia, NoƩlia; Rodriguez, J.
    Developing artificial intelligence (AI) solutions for communication problems is one of the hottest topics nowadays. This article presents Deep PC-MAC, a novel deep reinforcement learning (DRL) solution to solve the fair coexistence problem (FCP) between heterogeneous nodes in the unlicensed bands. It is based on a hybrid architecture between pointer networks (Ptr-nets) and advantage actor-critic (A2C), i.e., pointer-critic architecture. The proposed model allows base stations to fairly share unlicensed bands with incumbent nodes. It jointly protects the incumbent nodes from spectrum starvation and improves key-performance indicators (KPIs). Deep PC-MAC is trained from scratch with zero-knowledge about FCP and experimental results demonstrate its efficiency when compared to a baseline method.
  • Attention-based model and deep reinforcement learning for distribution of event processing tasks
    Publication . Mazayev, Andriy; Al-Tam, Faroq; Correia, NoƩlia
    Event processing is the cornerstone of the dynamic and responsive Internet of Things (IoT). Recent approaches in this area are based on representational state transfer (REST) principles, which allow event processing tasks to be placed at any device that follows the same principles. However, the tasks should be properly distributed among edge devices to ensure fair resources utilization and guarantee seamless execution. This article investigates the use of deep learning to fairly distribute the tasks. An attention-based neural network model is proposed to generate efficient load balancing solutions under different scenarios. The proposed model is based on the Transformer and Pointer Network architectures, and is trained by an advantage actorcritic reinforcement learning algorithm. The model is designed to scale to the number of event processing tasks and the number of edge devices, with no need for hyperparameters re-tuning or even retraining. Extensive experimental results show that the proposed model outperforms conventional heuristics in many key performance indicators. The generic design and the obtained results show that the proposed model can potentially be applied to several other load balancing problem variations, which makes the proposal an attractive option to be used in real-world scenarios due to its scalability and efficiency.
  • Interoperability in IoT through the semantic profiling of objects
    Publication . Mazayev, Andriy; Martins, Jaime; Correia, NoƩlia
    The emergence of smarter and broader people-oriented IoT applications and services requires interoperability at both data and knowledge levels. However, although some semantic IoT architectures have been proposed, achieving a high degree of interoperability requires dealing with a sea of non-integrated data, scattered across vertical silos. Also, these architectures do not fit into the machine-to-machine requirements, as data annotation has no knowledge on object interactions behind arriving data. This paper presents a vision of how to overcome these issues. More specifically, the semantic profiling of objects, through CoRE related standards, is envisaged as the key for data integration, allowing more powerful data annotation, validation, and reasoning. These are the key blocks for the development of intelligent applications.
  • Radio Resource Scheduling with Deep Pointer Networks and Reinforcement Learning
    Publication . Al-Tam, Faroq; Mazayev, Andriy; Correia, NoƩlia; Rodriguez, J.
    This article presents an artificial intelligence (AI) adaptable solution to handle the radio resource scheduling (RRS) task in 5G networks. RRS is one of the core tasks in radio resource management (RRM) and aims to efficiently allocate frequency domain resources to users. The proposed solution is an advantage pointer critic (APC) deep reinforcement learning (DRL) agent. It is built with a deep pointer network architecture and trained by the policy gradient algorithm. The proposed agent is deployed in a system level simulator and the experimental results demonstrate its adaptability to network dynamics and efficiency when compared to baseline algorithms.
  • Semantic web thing architecture
    Publication . Mazayev, Andriy; Martins, Jaime; Correia, NoƩlia
    As the Internet of Things evolves and matures, the number of connected devices and the amount of generated data grows exponentially. Integrative standards and API design patterns are required to deal with this fast growth, while easing machine to machine communication and promoting ubiquitous computing. This paper discusses the W3C Web of Things model that is currently in the process of standardization, and presents our overview and implementation of this model.
  • Cognitive load balancing approach for 6G MEC serving IoT mashups
    Publication . Attanasio, Barbara; Mazayev, Andriy; du Plessis, Shani; Correia, NoƩlia
    The sixth generation (6G) of communication networks represents more of a revolution than an evolution of the previous generations, providing new directions and innovative approaches to face the network challenges of the future. A crucial aspect is to make the best use of available resources for the support of an entirely new generation of services. From this viewpoint, the Web of Things (WoT), which enables Things to become Web Things to chain, use and re-use in IoT mashups, allows interoperability among IoT platforms. At the same time, Multi-access Edge Computing (MEC) brings computing and data storage to the edge of the network, which creates the so-called distributed and collective edge intelligence. Such intelligence is created in order to deal with the huge amount of data to be collected, analyzed and processed, from real word contexts, such as smart cities, which are evolving into dynamic and networked systems of people and things. To better exploit this architecture, it is crucial to break monolithic applications into modular microservices, which can be executed independently. Here, we propose an approach based on complex network theory and two weighted and interdependent multiplex networks to address the Microservices-compliant Load Balancing (McLB) problem in MEC infrastructure. Our findings show that the multiplex network representation represents an extra dimension of analysis, allowing to capture the complexity in WoT mashup organization and its impact on the organizational aspect of MEC servers. The impact of this extracted knowledge on the cognitive organization of MEC is quantified, through the use of heuristics that are engineered to guarantee load balancing and, consequently, QoS.
  • A bounded heuristic for collection-based routing in wireless sensor networks
    Publication . SchĆ¼tz, Gabriela; Correia, NoĆ©lia; Martins, Jaime; Mazayev, Andriy; Barradas, Ɓlvaro
    Wireless sensor networks are used to monitor and control physical phenomena and to provide interaction between clients and the physical environment. Clients have been typically users or user applications, but next generation wireless sensor networks will also work in machine-to-machine scenarios where some nodes can be interested in some other nodes' data. These scenarios may run the risk of becoming overloaded with messaging, a pernicious fact in particular for constrained networks where both bandwidth and power supply are limited. Resource collections can be used in wireless sensor networks to improve bandwidth usage and to reduce energy consumption, reducing the overall number of notification packets and wrapping overhead, required for the delivery of sensor data. This article proposes a heuristic algorithm for the planning of both routing and collections, in wireless sensor networks. Results show that collections are always worthwhile, and that the heuristic is able to find feasible and cost effective solutions, approaching its lower bound.