Loading...
Research Project
Methionine and tryptophan as nutraceutical strategies to improve mucosal immunity and vaccine efficiency in fish
Funder
Authors
Publications
Dietary tryptophan intervention counteracts stress-induced transcriptional changes in a teleost fish HPI axis during inflammation
Publication . Peixoto, Diogo; Carvalho, Inês; Machado, Marina; Aragão, Cláudia; Costas, Benjamín; Azeredo, Rita
Immune nutrition is currently used to enhance fish health by incorporating functional ingredients into aquafeeds. This study aimed to investigate the connections between tryptophan nutrition and the network that regulates the communication pathways between neuroendocrine and immune systems in European seabass (Dicentrarchus labrax). When tryptophan was supplemented in the diet of unstressed fish, it induced changes in the hypothalamic-pituitary-interrenal axis response to stress. Tryptophan-mediated effects were observed in the expression of anti-inflammatory cytokines and glucocorticoid receptors. Tryptophan supplementation decreased pro-opiomelanocortin b-like levels, that are related with adrenocorticotropic hormone and cortisol secretion. When stressed fish fed a tryptophan-supplemented diet were subjected to an inflammatory stimulus, plasma cortisol levels decreased and the expression of genes involved in the neuroendocrine response was altered. Modulatory effects of tryptophan dietary intervention on molecular patterns seem to be mediated by altered patterns in serotonergic activity.
Dietary tryptophan plays a role as an anti-inflammatory agent in european seabass (dicentrarchus labrax) juveniles during Chronic Inflammation
Publication . Azeredo, Rita; Peixoto, Diogo; Paulo Santos; Duarte, Inês; Ricardo, Ana; Machado, Marina; Costas, Benjamín; Aragão, Cláudia
Where teleost fish are concerned, the effects of a dietary tryptophan surplus are mostly immunosuppressive, making it a potential dietary anti-inflammatory strategy. The goal of the present work was to evaluate the effects of tryptophan dietary supplementation on immune and neuroendocrine responses of the European seabass, Dicentrarchus labrax, undergoing chronic inflammation. Juvenile European seabass were intraperitoneally injected with an inflammatory agent
(inflamed group) or a saline solution (control group). Within each group, fish were fed a control and a control-based diet supplemented with tryptophan for 4 weeks. Different tissues were sampled every week for the assessment of immune-related parameters. When tryptophan was provided
to fish undergoing inflammation, the gene expression of a macrophage marker increased sooner and remained high until the end of the experiment. The same fish showed a concurrent increase in peripheral monocyte counts. After one week, molecular patterns of anti-inflammatory processes seemed to be favoured by tryptophan. Altogether, results show that a short administration period seems to be critical where tryptophan supplementation is concerned since at later inflammatory stages—and longer feeding periods—fish fed this diet displayed a molecular profile similar to that of fish fed a control diet.
Dietary tryptophan intervention counteracts stress-induced transcriptional changes in a teleost fish HPI axis during inflammation
Publication . Peixoto, Diogo; Carvalho, Inês; Machado, Marina; Aragão, Cláudia; Costas, Benjamín; Azeredo, Rita
Immune nutrition is currently used to enhance fish health by incorporating functional ingredients into aquafeeds. This study aimed to investigate the connections between tryptophan nutrition and the network that regulates the communication pathways between neuroendocrine and immune systems in European seabass (Dicentrarchus labrax). When tryptophan was supplemented in the diet of unstressed fish, it induced changes in the hypothalamic-pituitary-interrenal axis response to stress. Tryptophan-mediated effects were observed in the expression of anti-inflammatory cytokines and glucocorticoid receptors. Tryptophan supplementation decreased pro-opiomelanocortin b-like levels, that are related with adrenocorticotropic hormone and cortisol secretion. When stressed fish fed a tryptophan-supplemented diet were subjected to an inflammatory stimulus, plasma cortisol levels decreased and the expression of genes involved in the neuroendocrine response was altered. Modulatory effects of tryptophan dietary intervention on molecular patterns seem to be mediated by altered patterns in serotonergic activity.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Concurso para Financiamento de Projetos de Investigação Científica e Desenvolvimento Tecnológico em Todos os Domínios Científicos - 2020
Funding Award Number
PTDC/CVT-CVT/7741/2020