Loading...
Research Project
Identification and functional analysis of genetic variants in left ventricular noncompaction cardiomyopathy
Funder
Authors
Publications
Generation and cardiac differentiation of a human induced pluripotent stem cell line UALGi002-A from a female patient with Left-Ventricular Noncompaction Cardiomyopathy
Publication . Calado, Sofia; Bento, Dina; Marques, Nuno; Bragança, José
Left Ventricular Noncompaction Cardiomyopathy (LVNC) is characterized by abnormal number and prominence of trabeculations of the left ventricle of the heart.
Although LVNC has been associated with mutations in several genes encoding for transcriptional regulators, ion channels, sarcomeric and mitochondrial proteins, approximately 60% of LVNC patients do not present these genetic alterations. Here, we describe an induced pluripotent stem cell (hiPSC) line (UALGi002-A)
originated from a LVNC female patient (LVNC-hiPSC) who does not present any previously known mutations associated to LVNC. The LVNC-hiPSC exhibited full pluripotency and differentiation potential and retained a normal karyotype after reprogramming. Moreover, the LVNC-hiPSC differentiated into contracting cardiomyocytes. This cellular model will be useful to study the molecular, genetic and functional aspects of LVNC in vitro.
Human stem cells for cardiac disease modeling and preclinical and clinical applications—are we on the road to success?
Publication . Correia, Cátia; Ferreira, Anita; Fernandes, Mónica T.; Silva, Bárbara M.; Esteves, Filipa; Leitao, Helena; Bragança, José; Calado, Sofia
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Generation and characterization of two isogenic induced pluripotent stem cell lines from a young female with microcephaly carrying a compound heterozygous mutation in BUB1 gene
Publication . Ferreira, Anita; Calado, Sofia; Jorge, Xavier; Lange, Job de; Carvalhal, Sara
Mutations in the Budding uninhibited by benzimidazoles (BUB1) gene were recently associated with neurodevelopmental disorders (Carvalhal et al., 2022). Here, we describe the generation and characterization of two induced pluripotent stem cells (iPSC) clones from a young female with microcephaly. The patient carried two variants in the BUBfibroblast gene (OMIM # 602452), one (c.[2197dupG]; p.[D732fs*11]) paternally inherited and one (c.[2625+1G>A]; p.[V822_L875del] maternally inherited. The generated clones exhibit a normal karyotype (UALGi003-A) and trisomy 8 (UALGi003-B), express pluripotency markers, and differentiate into trilineage cells in vitro. These cell lines can be used to study neurodevelopment and the processes of chromosome segregation.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
CEEC IND 3ed
Funding Award Number
2020.01532.CEECIND/CP1613/CT0005