Loading...
Research Project
NOVA Laboratory for Computer Science and Informatics
Funder
Authors
Publications
Novel cluster modeling for the spatiotemporal analysis of coastal upwelling
Publication . Nascimento, Susana; Martins, Alexandre; Relvas, Paulo; Luis, Joaquim; Mirkin, Boris
This work proposes a spatiotemporal clustering approach for the analysis of coastal upwelling from Sea Surface Temperature (SST) grid maps derived from satellite images. The algorithm, Core-Shell clustering, models the upwelling as an evolving cluster whose core points are constant during a certain time window while the shell points move through an in-and-out binary sequence. The least squares minimization of clustering criterion allows to derive key parameters in an automated way. The algorithm is initialized with an extension of Seeded Region Growing offering self-tuning thresholding, the STSEC algorithm, that is able to precisely delineate the upwelling region at each SST instant map. Yet, the application of STSEC to the SST grid maps as temporal data puts the business of finding relatively stable "time windows", here called "time ranges", for obtaining the core clusters onto an automated footing. The experiments conducted with three yearly collections of SST data of the Portuguese coast shown that the core-shell clusters precisely recognize the upwelling regions taking as ground-truth the STSEC segmentations with Kulczynski similarity score values higher than 98%. Also, the extracted time series of upwelling features presented consistent regularities among the three independent upwelling seasons.
Forecasting biotoxin contamination in mussels across production areas of the Portuguese coast with Artificial Neural Networks
Publication . Cruz, Rafaela C.; Reis Costa, Pedro; Krippahl, Ludwig; Lopes, Marta B.
Harmful algal blooms (HABs) and the consequent contamination of shellfish are complex processes depending on several biotic and abiotic variables, turning prediction of shellfish contamination into a challenging task. Not only the information of interest is dispersed among multiple sources, but also the complex temporal relationships between the time-series variables require advanced machine methods to model such relationships. In this study, multiple time-series variables measured in Portuguese shellfish production areas were used to forecast shellfish contamination by diarrhetic she-llfish poisoning (DSP) toxins one to four weeks in advance. These time series included DSP con-centration in mussels (Mytilus galloprovincialis), toxic phytoplankton cell counts, meteorological, and remotely sensed oceanographic variables. Several data pre-processing and feature engineering methods were tested, as well as multiple autoregressive and artificial neural network (ANN) models. The best results regarding the mean absolute error of prediction were obtained for a bivariate long short-term memory (LSTM) neural network based on biotoxin and toxic phytoplankton measurements, with higher accuracy for short-term forecasting horizons. When evaluating all ANNs model ability to predict the contamination state (below or above the regulatory limit for contamination) and changes to this state, multilayer perceptrons (MLP) and convolutional neural networks (CNN) yielded improved predictive performance on a case-by-case basis. These results show the possibility of extracting relevant information from time-series data from multiple sources which are predictive of DSP contamination in mussels, therefore placing ANNs as good candidate models to assist the production sector in anticipating harvesting interdictions and mitigating economic losses.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Time-lagged correlation analysis of Shellfish toxicity reveals predictive links to adjacent areas, species, and environmental conditions
Publication . Patrício, André; Lopes, Marta B.; Reis Costa, Pedro; Costa, Rafael S.; Henriques, Rui; Vinga, Susana
Diarrhetic Shellfish Poisoning (DSP) is an acute intoxication caused by the consumption of contaminated shellfish, which is common in many regions of the world. To safeguard human health, most countries implement programs focused on the surveillance of toxic phytoplankton abundance and shellfish toxicity levels, an effort that can be complemented by a deeper understanding of the underlying phenomena. In this work, we identify patterns of seasonality in shellfish toxicity across the Portuguese coast and analyse time-lagged correlations between this toxicity and various potential risk factors. We extend the understanding of these relations through the introduction of temporal lags, allowing the analysis of time series at different points in time and the study of the predictive power of the tested variables. This study confirms previous findings about toxicity seasonality patterns on the Portuguese coast and provides further quantitative data about the relations between shellfish toxicity and geographical location, shellfish species, toxic phytoplankton abundances, and environmental conditions. Furthermore, multiple pairs of areas and shellfish species are identified as having correlations high enough to allow for a predictive analysis. These results represent the first step towards understanding the dynamics of DSP toxicity in Portuguese shellfish producing areas, such as temporal and spatial variability, and towards the development of a shellfish safety forecasting system.
Piece‐wise constant cluster modelling of dynamics of upwelling patterns
Publication . Nascimento, Susana; Martins, Alexandre; Relvas, Paulo; Luis, Joaquim; Mirkin, Boris
A comprehensive approach is presented to analyse season's coastal upwelling represented by weekly sea surface temperature (SST) image grids. Our three-stage data recovery clustering method assumes that the season's upwelling can be divided into shorter periods of stability, ranges, each to be represented by a constant core and variable shell parts. Corresponding clustering algorithms parameters are automatically derived by using the least-squares clustering criterion. The approach has been successfully applied to real-world SST data covering two distinct regions: Portuguese coast and Morocco coast, for 16 years each.
Harnessing AI and NLP tools for innovating brand name generation and evaluation: a comprehensive review
Publication . Lemos, Marco; Cardoso, Pedro; Rodrigues, Joao
The traditional approach of single-word brand names faces constraints due to trademarks, prompting a shift towards fusing two or more words to craft unique and memorable brands, exemplified by brands such as SalesForce (c) or SnapChat (c). Furthermore, brands such as Kodak (c), Xerox (c), Google (c), H & auml;agen-Dazs (c), and Twitter (c) have become everyday names although they are not real words, underscoring the importance of brandability in the naming process. However, manual evaluation of the vast number of possible combinations poses challenges. Artificial intelligence (AI), particularly natural language processing (NLP), is emerging as a promising solution to address this complexity. Existing online brand name generators often lack the sophistication to comprehensively analyze meaning, sentiment, and semantics, creating an opportunity for AI-driven models to fill this void. In this context, the present document reviews AI, NLP, and text-to-speech tools that might be useful in innovating the brand name generation and evaluation process. A systematic search on Google Scholar, IEEE Xplore, and ScienceDirect was conducted to identify works that could assist in generating and evaluating brand names. This review explores techniques and datasets used to train AI models as well as strategies for leveraging objective data to validate the brandability of generated names. Emotional and semantic aspects of brand names, which are often overlooked in traditional approaches, are discussed as well. A list with more than 75 pivotal datasets is presented. As a result, this review provides an understanding of the potential applications of AI, NLP, and affective computing in brand name generation and evaluation, offering valuable insights for entrepreneurs and researchers alike.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
6817 - DCRRNI ID
Funding Award Number
UIDB/04516/2020