Loading...
Research Project
Untitled
Funder
Authors
Publications
Aliskiren decreases oxidative stress and angiogenic markers in retinal pigment epithelium cells
Publication . S, Simão; Santos, Daniela F.; Silva, Gabriela A.
There is growing evidence on the role of ocular renin-angiotensin system (RAS) in the development of diabetic retinopathy (DR), particularly due to the trigger of oxidative stress and angiogenesis. Despite this there is no effective RAS-based therapy in DR capable of preventing retinal damage induced by RAS activation. We recently described that retinal pigment epithelium (RPE) cells express the main components of the RAS. We here propose to investigate the role of glucose upon the retinal RAS and whether aliskiren, a direct renin inhibitor, protects RPE cells from angiogenesis and oxidative stress. RPE cells were chosen as target since one of the first events in DR is the dysfunction of the RPE retinal layer, which as a key function in maintaining the integrity of the retina. We found that the RAS present in the RPE cells was deregulated by hyperglycemic glucose concentrations. Exposure of RPE cells to angiotensin II increased the levels of the main pro-angiogenic factor, vascular endothelial growth factor (VEGF) in a concentration-dependent manner. Additionally, angiotensin II also stimulated the production of reactive oxygen species in RPE cells. Treatment of RPE cells with aliskiren decreased the levels of oxidative stress and promoted the expression of anti-angiogenic factors such as the pigment epithelium-derived factor and the VEGF(165)b isoform. Our findings demonstrate that the RAS is deregulated in hyperglycemic conditions and that aliskiren successfully protected RPE cells from RAS over activation. These anti-angiogenic and antioxidant properties described for aliskiren over RPE cells suggest that this drug has potential to be used in the treatment of diabetic retinopathy.
Aliskiren inhibits the renin-angiotensin system in retinal pigment epithelium cells
Publication . S, Simão; Santos, Daniela F.; Silva, Gabriela
Observations of increased angiotensin II levels and activation of the (pro)renin receptor in retinopathies support the role of ocular renin-angiotensin system (RAS) in the development of retinal diseases. While targeting RAS presents significant therapeutic potential, current RAS-based therapies are ineffective halting the progression of these diseases. A new class of drugs, the direct renin inhibitors such as aliskiren, is a potential therapeutic alternative. However, it is unclear how aliskiren acts in the retina, in particular in the retinal pigment epithelium (RPE), the structure responsible for the maintenance of retinal homeostasis whose role is deeply compromised in retinal diseases. We firstly analyzed the expression and activity of the main RAS components in RPE cells. Time- and concentration-dependent treatments with aliskiren were performed to modulate different pathways of the RAE in RPE cells. Our data demonstrate that RPE cells express the main RAS constituents. Exposure of RPE cells to aliskiren inhibited the activity of renin and consequently decreased the levels of angiotensin II. Additionally, aliskiren reduced the translocation of the (pro)renin receptor to the cellular membrane of RPE cells preventing the activation of ERK1/2.Our findings of the RPE well-defined RAS, together with the demonstration that aliskiren effectively blocks this system at different steps of the cascade, suggest that aliskiren might be an alternative and successful drug in preventing the deleterious effects derived from the overactivation of the RAS, known to contribute to the pathogenesis of different retinal diseases. (C) 2016 Elsevier B.V. All rights reserved.
Human-derived NLS enhance the gene transfer efficiency of chitosan
Publication . Bitoque, Diogo; Morais, Joana; Oliveira, Ana; Sequeira, Raquel L.; Calado, Sofia; Fortunato, Tiago M.; Simão, Sónia; Rosa Da Costa, Ana; Silva, Gabriela A.
Nuclear import is considered as one of the major limitations for non-viral gene delivery systems and the incorporation of nuclear localization signals (NLS) that mediate nuclear intake can be used as a strategy to enhance internalization of exogenous DNA. In this work, human-derived endogenous NLS peptides based on insulin growth factor binding proteins (IGFBP), namely IGFBP-3 and IGFBP-5, were tested for their ability to improve nuclear translocation of genetic material by non-viral vectors. Several strategies were tested to determine their effect on chitosan mediated transfection efficiency: co-administration with polyplexes, co-complexation at the time of polyplex formation, and covalent ligation to chitosan. Our results show that co-complexation and covalent ligation of the NLS peptide derived from IGFBP-3 to chitosan polyplexes yields a 2-fold increase in transfection efficiency, which was not observed for NLS peptide derived from IGFBP-5. These results indicate that the integration of IGFBP-NLS-3 peptides into polyplexes has potential as a strategy to enhance the efficiency of non-viral vectors.
GLUT1 activity contributes to the impairment of PEDF secretion by the RPE
Publication . Calado, Sofia; Alves, Liliana S.; S, Simão; Silva, Gabriela A.
Purpose: In this study, we aimed to understand whether glucose transporter 1 (GLUT1) activity affects the secretion capacity of antiangiogenic factor pigment epithelium-derived factor (PEDF) by the RPE cells, thus explaining the reduction in PEDF levels observed in patients with diabetic retinopathy (DR).Methods: Analysis of GLUT1 expression, localization, and function was performed in vitro in RPE cells (D407) cultured with different glucose concentrations, corresponding to non-diabetic (5 mM of glucose) and diabetic (25 mM of glucose) conditions, further subjected to normoxia or hypoxia. The expression of PEDF was also evaluated in the secretome of the cells cultured in these conditions. Analysis of GLUT1 and PEDF expression was also performed in vivo in the RPE of Ins2(Akita) diabetic mice and age-matched wild-type (WT) controls.Results: We observed an increase in GLUT1 under hypoxia in a glucose-dependent manner, which we found to be directly associated with the translocation and stabilization of GLUT1 in the cell membrane. This stabilization led to an increase in glucose uptake by RPE cells. This increase was followed by a decrease in PEDF expression in RPE cells cultured in conditions that simulated DR. Compared with non-diabetic WT mice, the RPE of Ins2Akita mice showed increased GLUT1 overexpression with a concomitant decrease in PEDF expression.Conclusions: Collectively, our data show that expression of GLUT1 is stimulated by hyperglycemia and low oxygen supply, and this overexpression was associated with increased activity of GLUT1 in the cell membrane that contributes to the impairment of the RPE secretory function of PEDF.
Deregulation of the retinal renin-angiotensin system precedes the onset of diabetic retinopathy
Publication . S, Simão; Bitoque, D. B.; Santos, D. F.; Araújo, Inês; Silva, G. A.
The renin-angiotensin system (RAS) is a set of complex pathways with a well-defined function in the regulation of blood pressure and body fluid homeostasis.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
SFRH
Funding Award Number
SFRH/BPD/78404/2011
