Loading...
Research Project
Not Available
Funder
Authors
Publications
Genome sequencing suggests diverse secondary metabolism in coral-associated aquimarina megaterium
Publication . Couceiro, Joana Fernandes; Keller-Costa, Tina; Kyrpides, Nikos C.; Woyke, Tanja; Whitman, William B.; Costa, Rodrigo
We report here the genome sequences of three Aquimarina megaterium strains isolated from the octocoral Euniceila labiata. We reveal a coding potential for versatile carbon metabolism and biosynthesis of natural products belonging to the polyketide, nonribosomal peptide, and terpene compound classes.
Assessing the genomic composition, putative ecological relevance and biotechnological potential of plasmids from sponge bacterial symbionts
Publication . Oliveira, Vanessa; Polónia, Ana R. M.; Cleary, Daniel F. R.; Huang, Yusheng M.; de Voogd, Nicole J.; Keller-Costa, Tina; Costa, Rodrigo; Gomes, Newton C. M.
Plasmid-mediated transfer of genes can have direct consequences in several biological processes within sponge microbial communities. However, very few studies have attempted genomic and functional characterization of plasmids from marine host-associated microbial communities in general and those of sponges in particular. In the present study, we used an endogenous plasmid isolation method to obtain plasmids from bacterial symbionts of the marine sponges Stylissa carteri and Paratetilla sp. and investigated the genomic composition, putative ecological relevance and biotechnological potential of these plasmids. In total, we isolated and characterized three complete plasmids, three plasmid prophages and one incomplete plasmid. Our results highlight the importance of plasmids to transfer relevant genetic traits putatively involved in microbial symbiont adaptation and host-microbe and microbe-microbe interactions. For example, putative genes involved in bacterial response to chemical stress, competition, metabolic versatility and mediation of bacterial colonization and pathogenicity were detected. Genes coding for enzymes and toxins of biotechnological potential were also detected. Most plasmid prophage coding sequences were, however, hypothetical proteins with unknown functions. Overall, this study highlights the ecological relevance of plasmids in the marine sponge microbiome and provides evidence that plasmids of sponge bacterial symbionts may represent an untapped resource of genes of biotechnological interest.
The Roseibium album (Labrenzia alba) genome possesses multiple symbiosis factors possibly underpinning host-microbe relationships in the Marine Benthos
Publication . Couceiro, Joana Fernandes; Keller-Costa, Tina; Marques, Matilde; Kyrpides, Nikos C.; Woyke, Tanja; Whitman, William B.; Costa, Rodrigo
Here, we announce the genomes of eight Roseibium album (synonym Labrenzia alba) strains that were obtained from the octocoral Eunicella labiata. Genome annotation revealed multiple symbiosis factors common to all genomes, such as eukaryotic-like repeat protein- and multidrug resistance-encoding genes, which likely underpin symbiotic relationships with marine invertebrate hosts.
Metagenomics-resolved genomics provides novel insights into chitin turnover, metabolic specialization, and niche partitioning in the octocoral microbiome
Publication . Keller-Costa, Tina; Kozma, Lydia; Silva, Sandra G.; Toscan, Rodolfo; Gonçalves, Jorge Manuel Santos; Lago-Lestón, Asunción; Kyrpides, Nikos C.; Nunes da Rocha, Ulisses; Costa, Rodrigo
The role of bacterial symbionts that populate octocorals (Cnidaria, Octocorallia) is still poorly understood. To shed light on their metabolic capacities, we examined 66 high-quality metagenome-assembled genomes (MAGs) spanning 30 prokaryotic species, retrieved from microbial metagenomes of three octocoral species and seawater.
Results
Symbionts of healthy octocorals were affiliated with the taxa Endozoicomonadaceae, Candidatus Thioglobaceae, Metamycoplasmataceae, unclassified Pseudomonadales, Rhodobacteraceae, unclassified Alphaproteobacteria and Ca. Rhabdochlamydiaceae. Phylogenomics inference revealed that the Endozoicomonadaceae symbionts uncovered here represent two species of a novel genus unique to temperate octocorals, here denoted Ca. Gorgonimonas eunicellae and Ca. Gorgonimonas leptogorgiae. Their genomes revealed metabolic capacities to thrive under suboxic conditions and high gene copy numbers of serine-threonine protein kinases, type 3-secretion system, type-4 pili, and ankyrin-repeat proteins, suggesting excellent capabilities to colonize, aggregate, and persist inside their host. Contrarily, MAGs obtained from seawater frequently lacked symbiosis-related genes. All Endozoicomonadaceae symbionts harbored endo-chitinase and chitin-binging protein-encoding genes, indicating that they can hydrolyze the most abundant polysaccharide in the oceans. Other symbionts, including Metamycoplasmataceae and Ca. Thioglobaceae, may assimilate the smaller chitin oligosaccharides resulting from chitin breakdown and engage in chitin deacetylation, respectively, suggesting possibilities for substrate cross-feeding and a role for the coral microbiome in overall chitin turnover. We also observed sharp differences in secondary metabolite production potential between symbiotic lineages. Specific Proteobacteria taxa may specialize in chemical defense and guard other symbionts, including Endozoicomonadaceae, which lack such capacity.
Conclusion
This is the first study to recover MAGs from dominant symbionts of octocorals, including those of so-far unculturable Endozoicomonadaceae, Ca. Thioglobaceae and Metamycoplasmataceae symbionts. We identify a thus-far unanticipated, global role for Endozoicomonadaceae symbionts of corals in the processing of chitin, the most abundant natural polysaccharide in the oceans and major component of the natural zoo- and phytoplankton feed of octocorals. We conclude that niche partitioning, metabolic specialization, and adaptation to low oxygen conditions among prokaryotic symbionts likely contribute to the plasticity and adaptability of the octocoral holobiont in changing marine environments. These findings bear implications not only for our understanding of symbiotic relationships in the marine realm but also for the functioning of benthic ecosystems at large.
Metagenome-assembled genome sequences of three uncultured planktomarina sp. strains from the Northeast Atlantic Ocean
Publication . Marques, Matilde; Borges, Nuno; Silva, Sandra Godinho; da Rocha, Ulisses Nunes; Lago-Lestón, Asunción; Keller-Costa, Tina; Da Silva Costa, Rodrigo
We report three metagenome-assembled genomes (MAGs) of Planktomarina strains from coastal seawater (Portugal) to help illuminate the functions of understudied Rhodobacteraceae bacteria in marine environments. The MAGs encode proteins involved in aerobic anoxygenic photosynthesis and a versatile carbohydrate metabolism, strengthening the role of Planktomarina species in oceanic carbon cycling.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
CEEC IND 2017
Funding Award Number
CEECIND/00788/2017/CP1461/CT0008