Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Characteristics of magnetic solar-like cycles in a 3D MHD simulation of solar convection
Publication . Passos, D.; Charbonneau, P.
We analyse the statistical properties of the stable magnetic cycle unfolding in an extended 3D magnetohydroclynamic simulation of solar convection produced with the EULAG-MHD code. The millennium,simulation spans over 1650 years, in the course of which forty polarity reversals take place on a regular similar to 40yr cadence, remaining well-synchronized across solar hemispheres. In order to characterize this cycle and facilitate its comparison with measures typically used to represent solar activity, we build two proxies for the magnetic field in the simulation mimicking the solar toroidal field and the polar radial field. Several quantities that characterize the cycle are measured (period, amplitudes, etc.) and correlations between them are computed, These are then compared with their observational analogs. From the typical Gnevyshesv-Ohl pattern, to hints of Gleissberg modulation the simulated cycles share many of the characteristics of their observational analogs even though the simulation lacks poloidal field regeneration through active region decay, a mechanism nowadays often considered an essential component of the solar dynamo. Some significant discrepancies are, also identified, most notably the in-phase variation of the simulated poloidal and toroidal large-scale magnetic components, and the low degree of hemispheric coupling at the level of hemispheric cycle amplitudes. Possible causes underlying these discrepancies are discussed.
Meridional circulation dynamics in a cyclic convective dynamo
Publication . Passos, Dário; Miesch, M.; Guerrero, G.; Charbonneau, P.
Surface observations indicate that the speed of the solar meridional circulation in the photosphere varies in anti-phase with the solar cycle. The current explanation for the source of this variation is that inflows into active regions alter the global surface pattern of the meridional circulation. When these localized inflows are integrated over a full hemisphere, they contribute to slowing down the axisymmetric poleward horizontal component. The behavior of this large-scale flow deep inside the convection zone remains largely unknown. Present helioseismic techniques are not sensitive enough to capture the dynamics of this weak large-scale flow. Moreover, the large time of integration needed to map the meridional circulation inside the convection zone, also masks some of the possible dynamics on shorter timescales. In this work we examine the dynamics of the meridional circulation that emerges from a 3D MHD global simulation of the solar convection zone. Our aim is to assess and quantify the behavior of meridional circulation deep inside the convection zone where the cyclic large-scale magnetic field can reach considerable strength. Our analyses indicate that the meridional circulation morphology and amplitude are both highly influenced by the magnetic field via the impact of magnetic torques on the global angular momentum distribution. A dynamic feature induced by these magnetic torques is the development of a prominent upward flow at mid-latitudes in the lower convection zone that occurs near the equatorward edge of the toroidal bands and that peaks during cycle maximum. Globally, the dynamo-generated large-scale magnetic field drives variations in the meridional flow, in stark contrast to the conventional kinematic flux transport view of the magnetic field being advected passively by the flow.
Meridional circulation dynamics from 3D magnetohydrodynamic global solar convection
Publication . Passos, Dario; Charbonneau, Paul; Miesch, Mark
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R-circle dot). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

SFRH

Funding Award Number

SFRH/BPD/68409/2010

ID