Repository logo
 
Loading...
Project Logo
Research Project

PLATAFORMAS ROCHOSAS VERSUS PRAIAS ARENOSAS: QUAL EXERCE MAIOR PROTECÇÃO RELATIVAMENTE AO RECUO NATURAL DE UMA ARRIBA

Authors

Publications

Protecção radiológica do serviço de radiologia do Hospital de Faro E.P.E.
Publication . Ferreira, Ana Filipa Pacheco do Carmo; Silva, Maria da Conceição Abreu e; Sousa, Patrick Emmanuel
Wave transformation on shore platform and adjacent sandy beach - Southern Portugal
Publication . Gabriel, Selma; Moura, Delminda; Horta, João; Oliveira, Sónia
The knowledge on coastal processes is not only of basic and practical importance (for instance in engineering applications) but also of socio-economic relevance. Crenulated coasts are complex geomorphic environments where both erosive (into headlands) and depositional processes (in embayed beaches) occur simultaneously. Waves represent an important morphogenic factor and the most important source of energy to coastal zones. However, field data reporting the interaction between waves and rocky coastal features is still scarce, leading to a poor understanding on rates and drivers of surf attenuation at rocky shores. Waves abrasion and erosion on shore platforms depend on the platform properties, morphology of the adjacent continental shelf, and water depth upon the platform surface, which is controlled by tides, available sediment and wave climate (e.g.,Stephenson and Kirk, 2000; Marshall and Stephenson, 2011). Shore platforms extending in the intertidal zone at the rocky cliffs’ toe are natural morphological barriers to wave propagation and energy attenuation (Ogawa et al., 2011). Over short time scales the beaches in a crenulated coast are modified mainly by waves causing setup and set down in the surf zone leading to a very complex pattern and circulation modified by the interaction between the currents induced by waves and the incident waves. The mechanisms involved in morphological modifications in those environments are still not well understood (Silva et al., 2010). This work aims to compare the waves behavior both on a shore platform and adjacent pocket beach in response to exactly the same offshore wave conditions.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

Funding Award Number

SFRH/BD/64497/2009

ID