Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Effect of temperature on growth, photosynthesis and biochemical composition of Nannochloropsis oceanica, grown outdoors in tubular photobioreactors
Publication . Carneiro, M.; Cicchi, B.; Maia, I. B.; Pereira, H.; Zittelli, G. Chini; Varela, João; Xavier Malcata, F.; Torzillo, G.
Since temperature is an important factor affecting microalgal growth, photosynthetic rate and biomass composition, this study has accordingly focused on its effects on biomass yield and nighttime biomass loss, as well as photochemical changes, using Nannochloropsis oceanica as model species, grown in two outdoor 50-L tubular photobioreactors (PBR). In two independent trials, cultures were subjected to a diurnal light:dark cycle, under a constant temperature of 28 degrees C and, on the second trial, at 18 degrees C. Changes in culture performance were assessed by measuring growth, lipid and fatty acid composition of the biomass in both morning and evening. Our results revealed that N. oceanica shows a wide temperature tolerance with relevant nighttime biomass loss, that decreased at lower temperatures, at the expenses of its daily productivity. Fluorescence measurements revealed reversible damage to photosystem II in cells growing in the PBR under optimal thermal conditions, whereas microalgae grown at suboptimal ones exhibited an overall lower photosynthetic activity. Lipids were partially consumed overnight to support cell division and provide maintenance energy. Eicosapentaenoic acid (EPA) catabolism reached a maximum after the dark period, as opposed to their saturated counterparts; whereas lower temperatures led to higher EPA content which reached the maximum in the morning. These findings are relevant for the production of Nannochloropsis at industrial scale.
In situ monitoring of chlorophyll a fluorescence in Nannochloropsis oceanica cultures to assess photochemical changes and the onset of lipid accumulation during nitrogen deprivation
Publication . Carneiro, Mariana; Chini Zittelli, Graziella; Cicchi, Bernardo; Touloupakis, Eleftherios; Faraloni, Cecilia; Maia, Inês Beatriz; Pereira, Hugo; Santos, Tamára; Malcata, Francisco X.; Otero, Ana; Varela, João; Torzillo, Giuseppe
In situ chlorophyll a fluorescence measurements were applied to monitor changes in the photochemical variables of Nannochloropsis oceanica cultures under nitrogen-deplete and nitrogen-replete (control) conditions. In addition, growth, lipid, fatty acid, and pigment contents were also followed. In the control culture, growth was promoted along with pigment content, electron transport rate (ETR), and polyunsaturated fatty acids, while total lipid content and fatty acid saturation level diminished. Under nitrogen-deplete conditions, the culture showed a higher de-epoxidation state of the xanthophyll cycle pigments. Fast transients revealed a poor processing efficiency for electron transfer beyond Q(A), which was in line with the low ETR due to nitrogen depletion. Lipid content and the de-epoxidation state were the first biochemical variables triggered by the change in nutrient status, which coincided with a 20% drop in the in situ effective quantum yield of PSII (Delta F'/F-m'), and a raise in the V-j measurements. A good correlation was found between the changes in Delta F'/F-m' and lipid content (r = -0.96, p < 0.01). The results confirm the reliability and applicability of in situ fluorescence measurements to monitor lipid induction in N. oceanica.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

POR_NORTE

Funding Award Number

67418

ID