Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Luminance, colour, viewpoint and border enhanced disparity energy model
Publication . Martins, Jaime; Rodrigues, Joao; du Buf, J. M. H.
The visual cortex is able to extract disparity information through the use of binocular cells. This process is reflected by the Disparity Energy Model, which describes the role and functioning of simple and complex binocular neuron populations, and how they are able to extract disparity. This model uses explicit cell parameters to mathematically determine preferred cell disparities, like spatial frequencies, orientations, binocular phases and receptive field positions. However, the brain cannot access such explicit cell parameters; it must rely on cell responses. In this article, we implemented a trained binocular neuronal population, which encodes disparity information implicitly. This allows the population to learn how to decode disparities, in a similar way to how our visual system could have developed this ability during evolution. At the same time, responses of monocular simple and complex cells can also encode line and edge information, which is useful for refining disparities at object borders. The brain should then be able, starting from a low-level disparity draft, to integrate all information, including colour and viewpoint perspective, in order to propagate better estimates to higher cortical areas.
Texture features for object salience
Publication . Terzic, Kasim; Krishna, Sai; du Buf, J. M. H.
Although texture is important for many vision-related tasks, it is not used in most salience models. As a consequence, there are images where all existing salience algorithms fail. We introduce a novel set of texture features built on top of a fast model of complex cells in striate cortex, i.e., visual area V1. The texture at each position is characterised by the two-dimensional local power spectrum obtained from Gabor filters which are tuned to many scales and orientations. We then apply a parametric model and describe the local spectrum by the combination of two one-dimensional Gaussian approximations: the scale and orientation distributions. The scale distribution indicates whether the texture has a dominant frequency and what frequency it is. Likewise, the orientation distribution attests the degree of anisotropy. We evaluate the features in combination with the state-of-the-art VOCUS2 salience algorithm. We found that using our novel texture features in addition to colour improves AUC by 3.8% on the PASCAL-S dataset when compared to the colour-only baseline, and by 62% on a novel texture-based dataset. (C) 2017 Elsevier B.V. All rights reserved.
A parametric spectral model for texture-based salience
Publication . Terzic, Kasim; Krishna, Sai; du Buf, J. M. H.; Gall, J.; Gehler, P.; Leibe, B.
We present a novel saliency mechanism based on texture. Local texture at each pixel is characterised by the 2D spectrum obtained from oriented Gabor filters. We then apply a parametric model and describe the texture at each pixel by a combination of two 1D Gaussian approximations. This results in a simple model which consists of only four parameters. These four parameters are then used as feature channels and standard Difference-of-Gaussian blob detection is applied in order to detect salient areas in the image, similar to the Itti and Koch model. Finally, a diffusion process is used to sharpen the resulting regions. Evaluation on a large saliency dataset shows a significant improvement of our method over the baseline Itti and Koch model.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

EXPL/EEI-SII/1982/2013

ID