Loading...
Research Project
Untitled
Funder
Authors
Publications
Proteolytic cleavage of polyglutamine disease-causing proteins: Revisiting the toxic fragment hypothesis
Publication . Matos, Carlos A.; de Almeida, Lus Pereira; Nóbrega, Clévio
Proteolytic cleavage has been implicated in the pathogenesis of diverse neurodegenerative diseases involving abnormal protein accumulation. Polyglutamine diseases are a group of nine hereditary disorders caused by an abnormal expansion of repeated glutamine tracts contained in otherwise unrelated proteins. When expanded, these proteins display toxic properties and are prone to aggregate, but the mechanisms responsible for the selective neurodegeneration observed in polyglutamine disease patients are still poorly understood. It has been suggested that the neuronal toxicity of polyglutamine-expanded proteins is associated with the production of deleterious protein fragments. This review aims at discussing the involvement of proteolytic cleavage in the six types of spinocerebellar ataxia caused by polyglutamine expansion of proteins. The analysis takes into detailed consideration evidence concerning fragment detection and the mechanisms of fragment toxicity. Current evidence suggests that the proteins involved in spinocerebellar ataxia types 3, 6 and 7 give rise to stable proteolytic fragments. Fragments carrying polyglutamine expansions display increased tendency to aggregate and toxicity, comparing with their non-expanded counterparts or with the correspondent full-length expanded proteins. Data concerning spinocerebellar ataxia types 1, 2 and 17 is still scarce, but available results afford further investigation. Available literature suggests that proteolytic cleavage of expanded polyglutamine-containing proteins enhances toxicity in disease-associated contexts and may constitute an important step in the pathogenic cascade of polyglutamine diseases. Countering protein fragmentation thus presents itself as a promising therapeutic aim.
Machado-Joseph disease/spinocerebellar ataxia type 3: lessons from disease pathogenesis and clues into therapy
Publication . Matos, Carlos A.; Pereira De Almeida, Luis; Nóbrega, Clévio
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is an incurable disorder, widely regarded as the most common form of spinocerebellar ataxia in the world. MJD/SCA3 arises from mutation of the ATXN3 gene, but this simple monogenic cause contrasts with the complexity of the pathogenic mechanisms that are currently admitted to underlie neuronal dysfunction and death. The aberrantly expanded protein product - ataxin-3 - is known to aggregate and generate toxic species that disrupt several cell systems, including autophagy, proteostasis, transcription, mitochondrial function and signalling. Over the years, research into putative therapeutic approaches has often been devoted to the development of strategies that counteract disease at different stages of cellular pathogenesis. Silencing the pathogenic protein, blocking aggregation, inhibiting toxic proteolytic processing and counteracting dysfunctions of the cellular systems affected have yielded promising ameliorating results in studies with cellular and animal models. The current review analyses the available studies dedicated to the investigation of MJD/SCA3 pathogenesis and the exploration of possible therapeutic strategies, focusing primarily on gene therapy and pharmacological approaches rooted on the molecular and cellular mechanisms of disease.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDTI
Funding Award Number
E-Rare4/0003/2012