Repository logo
 
Loading...
Project Logo
Research Project

Exploring CITED2 role in glioblastoma stem cell biology

Authors

Publications

Charting the path: navigating embryonic development to potentially safeguard against congenital heart defects
Publication . Bragança, José; Pinto, Rute L.; Silva, Barbara S.; Marques, Nuno; Leitao, Helena; Fernandes, Mónica T.
Congenital heart diseases (CHDs) are structural or functional defects present at birth due to improper heart development. Current therapeutic approaches to treating severe CHDs are primarily palliative surgical interventions during the peri- or prenatal stages, when the heart has fully developed from faulty embryogenesis. However, earlier interventions during embryonic development have the potential for better outcomes, as demonstrated by fetal cardiac interventions performed in utero, which have shown improved neonatal and prenatal survival rates, as well as reduced lifelong morbidity. Extensive research on heart development has identified key steps, cellular players, and the intricate network of signaling pathways and transcription factors governing cardiogenesis. Additionally, some reports have indicated that certain adverse genetic and environmental conditions leading to heart malformations and embryonic death may be amendable through the activation of alternative mechanisms. This review first highlights key molecular and cellular processes involved in heart development. Subsequently, it explores the potential for future therapeutic strategies, targeting early embryonic stages, to prevent CHDs, through the delivery of biomolecules or exosomes to compensate for faulty cardiogenic mechanisms. Implementing such non-surgical interventions during early gestation may offer a prophylactic approach toward reducing the occurrence and severity of CHDs.
Human stem cells for cardiac disease modeling and preclinical and clinical applications—are we on the road to success?
Publication . Correia, Cátia; Ferreira, Anita; Fernandes, Mónica T.; Silva, Bárbara M.; Esteves, Filipa; Leitao, Helena; Bragança, José; Calado, Sofia
Cardiovascular diseases (CVDs) are pointed out by the World Health Organization (WHO) as the leading cause of death, contributing to a significant and growing global health and economic burden. Despite advancements in clinical approaches, there is a critical need for innovative cardiovascular treatments to improve patient outcomes. Therapies based on adult stem cells (ASCs) and embryonic stem cells (ESCs) have emerged as promising strategies to regenerate damaged cardiac tissue and restore cardiac function. Moreover, the generation of human induced pluripotent stem cells (iPSCs) from somatic cells has opened new avenues for disease modeling, drug discovery, and regenerative medicine applications, with fewer ethical concerns than those associated with ESCs. Herein, we provide a state-of-the-art review on the application of human pluripotent stem cells in CVD research and clinics. We describe the types and sources of stem cells that have been tested in preclinical and clinical trials for the treatment of CVDs as well as the applications of pluripotent stem-cell-derived in vitro systems to mimic disease phenotypes. How human stem-cell-based in vitro systems can overcome the limitations of current toxicological studies is also discussed. Finally, the current state of clinical trials involving stem-cell-based approaches to treat CVDs are presented, and the strengths and weaknesses are critically discussed to assess whether researchers and clinicians are getting closer to success.
Advancing glioblastoma research with innovative brain organoid-based models
Publication . Dias Correia, Cátia; Calado, Sofia; Matos, Alexandra; Oleiro Esteves, Filipa Alexandra; De Sousa-Coelho, Ana Luísa; Campinho, Marco António; Teotónio Fernandes, Mónica Alexandra
Glioblastoma (GBM) is a relatively rare but highly aggressive form of brain cancer characterized by rapid growth, invasiveness, and resistance to standard therapies. Despite significant progress in understanding its molecular and cellular mechanisms, GBM remains one of the most challenging cancers to treat due to its high heterogeneity and complex tumor microenvironment. To address these obstacles, researchers have employed a range of models, including in vitro cell cultures and in vivo animal models, but these often fail to replicate the complexity of GBM. As a result, there has been a growing focus on refining these models by incorporating human-origin cells, along with advanced genetic techniques and stem cell-based bioengineering approaches. In this context, a variety of GBM models based on brain organoids were developed and confirmed to be clinically relevant and are contributing to the advancement of GBM research at the preclinical level. This review explores the preparation and use of brain organoid-based models to deepen our understanding of GBM biology and to explore novel therapeutic approaches. These innovative models hold significant promise for improving our ability to study this deadly cancer and for advancing the development of more effective treatments.

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

3599-PPCDT

Funding Award Number

2022.09209.PTDC

ID