Loading...
Research Project
Untitled
Funder
Authors
Publications
Heatwave effects on the photosynthesis and antioxidant activity of the seagrass Cymodocea nodosa under contrasting light regimes
Publication . Costa, Monya; Silva, João; Barrote, Isabel; Santos, Rui
Global climate change, specifically the intensification of marine heatwaves, affect seagrasses. In the Ria Formosa, saturating light intensities may aggravate heatwave effects on seagrasses, particularly during low spring tides. However, the photophysiological and antioxidant responses of seagrasses to such extreme events are poorly known. Here, we evaluated the responses of Cymodocea nodosa exposed at 20 °C and 40 °C and 150 and 450 μmol quanta m−2 s−1. After four-days, we analyzed (a) photosynthetic responses to irradiance, maximum photochemical efficiency (Fv/Fm), the effective quantum yield of photosystem II (ɸPSII); (b) soluble sugars and starch; (c) photosynthetic pigments; (d) antioxidant responses (ascorbate peroxidase, APX; oxygen radical absorbance capacity, ORAC, and antioxidant capacity, TEAC); (d) oxidative damage (malondialdehyde, MDA). After four days at 40 °C, C. nodosa showed relevant changes in photosynthetic pigments, independent of light intensity. Increased TEAC and APX indicated an “investment” in the control of reactive oxygen species levels. Dark respiration and starch concentration increased, but soluble sugar concentrations were not affected, suggesting higher CO2 assimilation. Our results show that C. nodosa adjusts its photophysiological processes to successfully handle thermal stress, even under saturating light, and draws a promising perspective for C. nodosa resilience under climate change scenarios.
Daily regulation of key metabolic pathways in two seagrasses under natural light conditions
Publication . Ruocco, Miriam; Barrote, Isabel; Hofman, Jan Dirk; Pes, Katia; Costa, Monya; Procaccini, Gabriele; Silva, João; Dattolo, Emanuela
The circadian clock is an endogenous time-keeping mechanism that enables organisms
to adapt to external environmental cycles. It produces rhythms of plant metabolism
and physiology, and interacts with signaling pathways controlling daily and seasonal
environmental responses through gene expression regulation. Downstream metabolic
outputs, such as photosynthesis and sugar metabolism, besides being affected by
the clock, can also contribute to the circadian timing itself. In marine plants, studies
of circadian rhythms are still way behind in respect to terrestrial species, which
strongly limits the understanding of how they coordinate their physiology and energetic
metabolism with environmental signals at sea. Here, we provided a first description
of daily timing of key core clock components and clock output pathways in two
seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), cooccurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/MAR-EST/4257/2014