Name: | Description: | Size: | Format: | |
---|---|---|---|---|
8.2 MB | Adobe PDF |
Advisor(s)
Abstract(s)
The circadian clock is an endogenous time-keeping mechanism that enables organisms
to adapt to external environmental cycles. It produces rhythms of plant metabolism
and physiology, and interacts with signaling pathways controlling daily and seasonal
environmental responses through gene expression regulation. Downstream metabolic
outputs, such as photosynthesis and sugar metabolism, besides being affected by
the clock, can also contribute to the circadian timing itself. In marine plants, studies
of circadian rhythms are still way behind in respect to terrestrial species, which
strongly limits the understanding of how they coordinate their physiology and energetic
metabolism with environmental signals at sea. Here, we provided a first description
of daily timing of key core clock components and clock output pathways in two
seagrass species, Cymodocea nodosa and Zostera marina (order Alismatales), cooccurring at the same geographic location, thus exposed to identical natural variations in photoperiod. Large differences were observed between species in the daily timing of accumulation of transcripts related to key metabolic pathways, such as photosynthesis and sucrose synthesis/transport, highlighting the importance of intrinsic biological, and likely ecological attributes of the species in determining the periodicity of functions. The two species exhibited a differential sensitivity to light-to-dark and dark-to-light transition times and could adopt different growth timing based on a differential strategy of resource allocation and mobilization throughout the day, possibly coordinated by the circadian clock. This behavior could potentially derive from divergent evolutionary adaptations of the species to their bio-geographical range of distributions.
Description
Keywords
Gene expression Sugars Circadian clock Marine plants Primary metabolism Photoperiod
Citation
Publisher
Frontiers Media SA