Loading...
Research Project
Alternative splicing and its impact on molecular networks during stem cell differentiation
Funder
Authors
Publications
UniHI 7: an enhanced database for retrieval and interactive analysis of human molecular interaction networks
Publication . Kalathur, Ravi Kiran Reddy; Pinto, Jose Pedro; Hernandez-Prieto, Miguel A.; Machado, Rui; Almeida, Dulce; Chaurasia, Gautam; Futschik, Matthias E.
Unified Human Interactome (UniHI) (http://www.unihi.org) is a database for retrieval, analysis and visualization of human molecular interaction networks. Its primary aim is to provide a comprehensive and easy-to-use platform for network-based investigations to a wide community of researchers in biology and medicine. Here, we describe a major update (version 7) of the database previously featured in NAR Database Issue. UniHI 7 currently includes almost 350 000 molecular interactions between genes, proteins and drugs, as well as numerous other types of data such as gene expression and functional annotation. Multiple options for interactive filtering and highlighting of proteins can be employed to obtain more reliable and specific network structures. Expression and other genomic data can be uploaded by the user to examine local network structures. Additional built-in tools enable ready identification of known drug targets, as well as of biological processes, phenotypes and pathways enriched with network proteins. A distinctive feature of UniHI 7 is its user-friendly interface designed to be utilized in an intuitive manner, enabling researchers less acquainted with network analysis to perform state-of-the-art network-based investigations.
StemChecker: a web-based tool to discover and explore stemness signatures in gene sets
Publication . Pinto, Jose P.; Kalathur, Ravi Kiran Reddy; Oliveira, Daniel V.; Barata, Tania; Machado, Rui; Machado, Susana; Pacheco-Leyva, Ivette; Duarte, Isabel; Futschik, Matthias E.
Stem cells present unique regenerative abilities, offering great potential for treatment of prevalent pathologies such as diabetes, neurodegenerative and heart diseases. Various research groups dedicated significant effort to identify sets of genes-so-called stemness signatures-considered essential to define stem cells. However, their usage has been hindered by the lack of comprehensive resources and easy-to-use tools. For this we developed StemChecker, a novel stemness analysis tool, based on the curation of nearly fifty published stemness signatures defined by gene expression, RNAi screens, Transcription Factor (TF) binding sites, literature reviews and computational approaches. StemChecker allows researchers to explore the presence of stemness signatures in user-defined gene sets, without carrying-out lengthy literature curation or data processing. To assist in exploring underlying regulatory mechanisms, we collected over 80 target gene sets of TFs associated with pluri- or multipotency. StemChecker presents an intuitive graphical display, as well as detailed statistical results in table format, which helps revealing transcriptionally regulatory programs, indicating the putative involvement of stemness-associated processes in diseases like cancer. Overall, StemChecker substantially expands the available repertoire of online tools, designed to assist the stem cell biology, developmental biology, regenerative medicine and human disease research community. StemChecker is freely accessible at http://stemchecker.sysbiolab.eu.
StemCellNet: an interactive platform for network-oriented investigations in stem cell biology
Publication . Pinto, Jose P.; Kalathur, Ravi Kiran Reddy; Machado, Rui; JM Xavier; Bragança, José; Futschik, Matthias E.
Stem cells are characterized by their potential for self-renewal and their capacity to differentiate into mature cells. These two key features emerge through the interplay of various factors within complex molecular networks. To provide researchers with a dedicated tool to investigate these networks, we have developed StemCellNet, a versatile web server for interactive network analysis and visualization. It rapidly generates focused networks based on a large collection of physical and regulatory interactions identified in human and murine stem cells. The StemCellNet web-interface has various easy-to-use tools for selection and prioritization of network components, as well as for integration of expression data provided by the user. As a unique feature, the networks generated can be screened against a compendium of stemness-associated genes. StemCellNet can also indicate novel candidate genes by evaluating their connectivity patterns. Finally, an optional dataset of generic interactions, which provides large coverage of the human and mouse proteome, extends the versatility of StemCellNet to other biomedical research areas in which stem cells play important roles, such as in degenerative diseases or cancer. The StemCellNet web server is freely accessible at http://stemcellnet.sysbiolab.eu.
Novel Human Embryonic Stem Cell Regulators Identified by Conserved and Distinct CpG Island Methylation State
Publication . Pells, Steve; Koutsouraki, Eirini; Morfopoulou, Sofia; Valencia-Cadavid, Sara; Tomlinson, Simon R.; Kalathur, Ravi Kiran Reddy; Futschik, Matthias E.; De Sousa, Paul A.
Human embryonic stem cells (hESCs) undergo epigenetic changes in vitro which may compromise function, so an epigenetic pluripotency "signature" would be invaluable for line validation. We assessed Cytosine-phosphate-Guanine Island (CGI) methylation in hESCs by genomic DNA hybridisation to a CGI array, and saw substantial variation in CGI methylation between lines. Comparison of hESC CGI methylation profiles to corresponding somatic tissue data and hESC mRNA expression profiles identified a conserved hESC-specific methylation pattern associated with expressed genes. Transcriptional repressors and activators were over-represented amongst genes whose associated CGIs were methylated or unmethylated specifically in hESCs, respectively. Knockdown of candidate transcriptional regulators (HMGA1, GLIS2, PFDN5) induced differentiation in hESCs, whereas ectopic expression in fibroblasts modulated iPSC colony formation. Chromatin immunoprecipitation confirmed interaction between the candidates and the core pluripotency transcription factor network. We thus identify novel pluripotency genes on the basis of a conserved and distinct epigenetic configuration in human stem cells.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
3599-PPCDT
Funding Award Number
PTDC/BIA-GEN/116519/2010