Repository logo
 
Loading...
Project Logo
Research Project

Untitled

Authors

Publications

Dependency structure matrix, genetic algorithms, and effective recombination
Publication . Yu, Tian-Li; Goldberg, David E.; Sastry, Kumara; Lima, Claudio F.; Pelikan, Martin
In many different fields, researchers are often confronted by problems arising from complex systems. Simple heuristics or even enumeration works quite well on small and easy problems; however, to efficiently solve large and difficult problems, proper decomposition is the key. In this paper, investigating and analyzing interactions between components of complex systems shed some light on problem decomposition. By recognizing three bare-bones interactions-modularity, hierarchy, and overlap, facet-wise models arc developed to dissect and inspect problem decomposition in the context of genetic algorithms. The proposed genetic algorithm design utilizes a matrix representation of an interaction graph to analyze and explicitly decompose the problem. The results from this paper should benefit research both technically and scientifically. Technically, this paper develops an automated dependency structure matrix clustering technique and utilizes it to design a model-building genetic algorithm that learns and delivers the problem structure. Scientifically, the explicit interaction model describes the problem structure very well and helps researchers gain important insights through the explicitness of the procedure.
Substructural local search in discrete estimation of distribution algorithms
Publication . Lima, Cláudio Miguel Faleiro de; Lobo, Fernando
The last decade has seen the rise and consolidation of a new trend of stochastic optimizers known as estimation of distribution algorithms (EDAs). In essence, EDAs build probabilistic models of promising solutions and sample from the corresponding probability distributions to obtain new solutions. This approach has brought a new view to evolutionary computation because, while solving a given problem with an EDA, the user has access to a set of models that reveal probabilistic dependencies between variables, an important source of information about the problem. This dissertation proposes the integration of substructural local search (SLS) in EDAs to speedup the convergence to optimal solutions. Substructural neighborhoods are de ned by the structure of the probabilistic models used in EDAs, generating adaptive neighborhoods capable of automatic discovery and exploitation of problem regularities. Speci cally, the thesis focuses on the extended compact genetic algorithm and the Bayesian optimization algorithm. The utility of SLS in EDAs is investigated for a number of boundedly di cult problems with modularity, overlapping, and hierarchy, while considering important aspects such as scaling and noise. The results show that SLS can substantially reduce the number of function evaluations required to solve some of these problems. More importantly, the speedups obtained can scale up to the square root of the problem size O( p `).

Organizational Units

Description

Keywords

Contributors

Funders

Funding agency

Fundação para a Ciência e a Tecnologia

Funding programme

SFRH

Funding Award Number

SFRH/BD/16980/2004

ID