Name: | Description: | Size: | Format: | |
---|---|---|---|---|
2.22 MB | Adobe PDF |
Authors
Advisor(s)
Abstract(s)
The last decade has seen the rise and consolidation of a new trend of stochastic
optimizers known as estimation of distribution algorithms (EDAs). In essence, EDAs
build probabilistic models of promising solutions and sample from the corresponding
probability distributions to obtain new solutions. This approach has brought a new
view to evolutionary computation because, while solving a given problem with an
EDA, the user has access to a set of models that reveal probabilistic dependencies
between variables, an important source of information about the problem.
This dissertation proposes the integration of substructural local search (SLS)
in EDAs to speedup the convergence to optimal solutions. Substructural neighborhoods
are de ned by the structure of the probabilistic models used in EDAs,
generating adaptive neighborhoods capable of automatic discovery and exploitation
of problem regularities. Speci cally, the thesis focuses on the extended compact
genetic algorithm and the Bayesian optimization algorithm. The utility of SLS in
EDAs is investigated for a number of boundedly di cult problems with modularity,
overlapping, and hierarchy, while considering important aspects such as scaling
and noise. The results show that SLS can substantially reduce the number of function
evaluations required to solve some of these problems. More importantly, the
speedups obtained can scale up to the square root of the problem size O(
p
`).
Description
Tese dout., Engenharia Electrónica e Computação, Universidade do Algarve, 2009
SFRH/BD/16980/2004
SFRH/BD/16980/2004
Keywords
Teses Algoritmos genéticos Algoritmos de estimação da distribuição