Repository logo
 
Publication

MOGA design of neural network predictors of inside temperature in public buildings

dc.contributor.authorRuano, Antonio
dc.contributor.authorCrispim, E. M.
dc.contributor.authorFrazão, P. M.
dc.date.accessioned2013-02-06T14:26:01Z
dc.date.available2013-02-06T14:26:01Z
dc.date.issued2009
dc.date.updated2013-01-26T17:30:53Z
dc.description.abstractThe use of artificial neural networks in various applications related with energy management in buildings has been increasing significantly over the recent years. In this chapter, the design of inside air temperature predictive neural network models, to be used for predictive thermal comfort control, is discussed. The design is based on the joint use of multi-objective genetic (MOGA) algorithms, for selecting the network structure and the network inputs, and a derivative algorithm, for parameter estimation. Climate and environmental data from a secondary school located in the south of Portugal, collected by a remote data acquisition system, are used to generate the models. By using a sliding window adaptive methodology, the good results obtained off-line are extended throughout the whole year.por
dc.identifier.citationRuano, A. E.; Crispim, E. M.; Frazão, P. M. MOGA Design of Neural Network Predictors of Inside Temperature in Public Buildings, In Soft Computing Based Modeling in Intelligent Systems, 35-61, ISBN: 978-3-642-00447-6. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.por
dc.identifier.isbn978-3-642-00447-6
dc.identifier.otherAUT: ARU00698;
dc.identifier.urihttp://hdl.handle.net/10400.1/2234
dc.language.isoengpor
dc.peerreviewedyespor
dc.publisherSpringer Berlin Heidelbergpor
dc.titleMOGA design of neural network predictors of inside temperature in public buildingspor
dc.typejournal article
dspace.entity.typePublication
oaire.citation.endPage61por
oaire.citation.startPage35por
oaire.citation.titleSoft Computing Based Modeling in Intelligent Systemspor
person.familyNameRuano
person.givenNameAntonio
person.identifier.orcid0000-0002-6308-8666
person.identifier.ridB-4135-2008
person.identifier.scopus-author-id7004284159
rcaap.rightsrestrictedAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublication13813664-b68b-40aa-97a9-91481a31ebf2
relation.isAuthorOfPublication.latestForDiscovery13813664-b68b-40aa-97a9-91481a31ebf2

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ruano_Chapter_SCBMIS.pdf
Size:
794.25 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: