Repository logo
 
Publication

Effective computability of solutions of differential inclusions-the ten thousand monkeys approach

dc.contributor.authorCollins, Pieter
dc.contributor.authorGraça, Daniel
dc.date.accessioned2012-04-13T08:43:10Z
dc.date.available2012-04-13T08:43:10Z
dc.date.issued2009
dc.description.abstractIn this note we consider the computability of the solution of the initial- value problem for ordinary di erential equations with continuous right- hand side. We present algorithms for the computation of the solution using the \thousand monkeys" approach, in which we generate all possi- ble solution tubes, and then check which are valid. In this way, we show that the solution of a di erential equation de ned by a locally Lipschitz function is computable even if the function is not e ectively locally Lips- chitz. We also recover a result of Ruohonen, in which it is shown that if the solution is unique, then it is computable, even if the right-hand side is not locally Lipschitz. We also prove that the maximal interval of existence for the solution must be e ectively enumerable open, and give an example of a computable locally Lipschitz function which is not e ectively locally Lipschitz.por
dc.identifier.otherAUT: DGR01772;
dc.identifier.urihttp://hdl.handle.net/10400.1/1017
dc.language.isoengpor
dc.peerreviewedyespor
dc.relation.publisherversionhttp://www.jucs.org/jucs_15_6/effective_computability_of_solutionspor
dc.subjectOrdinary differential equationspor
dc.subjectLipschitz conditionpor
dc.subjectDifferential inclusionspor
dc.subjectSemicomputabilitypor
dc.subjectComputable analysispor
dc.titleEffective computability of solutions of differential inclusions-the ten thousand monkeys approachpor
dc.typejournal article
dspace.entity.typePublication
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/SFRH/SFRH%2FBPD%2F39779%2F2007/PT
oaire.citation.endPage1185por
oaire.citation.issue15por
oaire.citation.startPage1162por
oaire.citation.titleJournal of Universal Computer Sciencepor
oaire.fundingStreamSFRH
person.familyNameGraça
person.givenNameDaniel
person.identifier.ciencia-id2D11-56DE-3F11
person.identifier.orcid0000-0002-0330-833X
person.identifier.ridD-2335-2011
person.identifier.scopus-author-id8882791800
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsopenAccesspor
rcaap.typearticlepor
relation.isAuthorOfPublicationba0c1461-5d2d-4f06-b648-df4a1a505bdf
relation.isAuthorOfPublication.latestForDiscoveryba0c1461-5d2d-4f06-b648-df4a1a505bdf
relation.isProjectOfPublicationca0b6e31-fdc5-43cf-9c85-6d0b235935de
relation.isProjectOfPublication.latestForDiscoveryca0b6e31-fdc5-43cf-9c85-6d0b235935de

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
08-CG-TTMA.pdf
Size:
232.47 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: